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ABSTRACT

Estimation of the trajectory of a target from a pas-
sive sonar’s bearings and frequency measurements in the
presence of multivariate normally distributed noise, with
unknown inhomogeneous general covariance, is modelled
as a nonlinear multiresponse parameter estimation prob-
lem. It is shown that Maximum Likelihood Estima-
tion in this case is identical to optimizing a determi-
nant criterion which has a concise form and contains
no elements of unknown covariance matrix. An effective
Guass-Newton type algorithm, using only the first-order
derivatives of the model function, is presented to imple-
ment such estimation. The simulation shows that the
proposed approach is superior to the traditional estima-
tion methods especially under the condition of strong
inhomogeneity of noise covariance and high correlation
between different types of measurement noises.

1. INTRODUCTION

Passive Doppler-bearing tracking (DBT) is the determi-
nation of the trajectory of a target solely from noise-
corrupted bearings and Doppler-shifted frequency mea-
surements of signals originating from the target. DBT
have two advantages over conventional bearings-only
tracking (BOT): no requirement of a maneuver of the
ownship for the observability of target motion param-
eter, and the more precise estimate obtained {2]. Tra-
ditionally, it always assumes that: the noises are inde-
pendent and normally distributed while the variances
of noises are time-shifted invariant [1]-[5]. Thus, Maxi-
mum Likelihood Estimation (MLE) for BOT is just the
nonlinear least square estimation [1], and MLE for DBT
is of a weighted least square form [5]. However, this as-
sumption may not be realistic. It could be reasonable
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to assume that the variance of the same type measure-
ment noise is constant within a relative short period
but not for all the time, as both the target’s state rel-
ative to the ownship and the environmental conditions
may have changed remarkably. Furthermore, assuming
independent noises for different type measurements at
the same instant could not be justified, as all of these
measurements come out of the same noise-contaminated
signal and “asymptotically uncorrelated” property does
not hold for the situations where only small number of
samples are available.

In this paper, we present a generalized MLE algorithm
to solve the DBT problem under the more general as-
sumption that the noises are multivariate-normally dis-
tributed and have the unknown inhomogeneous covari-
ance matrix with any forms. Although the combination
of linearization, poor condition and small signal-to-noise
ratio is one of reasons for using nonrecursive estima-
tion method with favorable numerical properties [5], the
most important one for using MLE in this paper is its ef-
ficiency to deal with the arbitrary forms of unknown in-
homogeneous noise covariance matrix. Such advantage
can be shown in the two steps of the algorithm: First,
the generalized MLE is simply identical to minimizing a
concise criterion, so-called determinant criterion, which
does not contain any terms of unknown noise covariance
matrix. Secondly, a novel Guass-Newton type algorithm
is presented to implement such iterative optimizing pro-
cedure, where it needs only the first-order derivatives of
the model function to construct the gradient and an ap-
proximate Hessian through a proposed simple transfor-
mation. Thus, the proposed approach gives more precise
ouput and needs less computations than conventional
batch process method.

2. THEORY

The measurement equation can be written in a general
form, referred to as the so-called multiresponse model,

Y = F(X)+2 (1)
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where X = [R, 3,v,0]T denotes the relative state vector

of target to ownship (range R, bearing S, speed.v and
course #). Y is N x M observation matrix whose (¢, j)-th
element denotes the ith type of measurements at the jth
instant. §; and f] denotes bearing angle and frequency
measurement respectively. F' is the N x M model func-
tion matrix depending on the unknown parameter X,
and Z is the N x M noise matrix.

In this tracking problem the purpose is to estimate the
state vector X from a set of measurements Y. Such
estimate X are given by the values of X which opti-
mize some criterion. The criterion will depend on the
assumptions about the noise Z. For example, for BOT
we make the stringent assumption that Z are normally
distributed and independent with the same variance o2,
then least squares is appropriate and it leads to the trace
criterion, i.e. minimizing tr(Z7 Z). This paper extends
the noise assumption to the more general case, as listed
below.

Assumption 1. The observation period N is uniformly
decomposed into a finite number of segments n, during
which the noise Zp (k = 0,1,---, K) of measurements
are multivariate normally distributed with the unknown
covariance, i.e. Zy ~ N(0,Qy).

Assumption 2: At the same instant, noises of different
types of measurements are correlated, {Qi}i; #0 Vi#
Jj (k=0,--- K)

Assumption 3: In the k-th segment, the covariance of
noises is constant but it differs from that of another
segment &’ (k' # k), i.e. inhomogeneous covariance as
Qr # Qe (K £ k).

Assumption 4: Noises of measurements at the differ-
ent instants are independent, i.e. E[ZTZ;] =0 Vk #
K (k,k=0,---,K)

Obviously, the joint probability density function for the
N observations, conditional on all the unknown param-
eters, is,

K
p(Y1X,9Q) o [T 1907 ?exp

[ tr(Zx Q71 27)
k=0

2| @

where the vertical bars | -| denotes a determinant. Then
the MLE is equivalent to maximize the loglikelihood
function,

L(X, Q5"+, Q) = constant+2[&ln]9 |

k=0

(2,07 ZF)
e (3)
Write the last term as tr(Z7 Z,Q;') and differentiate
the entire expression with respect to the (¢, j)th element
7 of Q7. Using the result [6]

()ln|9 1|
Py - {Qk}z] (4)
o
allows to write,
OL(X, Q7Y 071 n ]
( go—” i) - {0k - & 2} ()
k

Then, setting this derivative to zero provides the condi-
tional estimate,

{2{2:}
n

{Q} = (6)

which, when substituted into (3), gives the conditional
loglikelihood function,

K
Q=Y = constant —= S 2in|2T 2] (7
&) = constant =3 ZnlZ{ 2] (1)

L(X,le,u-,

the MLE is then obtained by minimizing the determi-
nant criterion,

K

[1128 2. (8

k=0
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3. NUMERICAL ALGORITHM

Newton-type method are well-established iterative tech-
niques designed to solve general minimization problems
as (8). Here, to overcome the difficulty of non-positive
definite Hessian, a modified Newton method based on
the modified Cholesky decomposition of Hessian [9] is
utilized. A typical Newton-type algorithm consists of
the basic step of calculating the gradient vector g(*) and
Hessian matrix H(*) from first two order derivatives of
model function in each iteration, and consequently this
step needs much more computations. This paper gives
an efficient evaluation of g*) and H‘*) using only first-
order derivatives of the model through a simple trans-
formation.

First, the determinant criterion is written as,

K
=] o (9)

where

or = | 2L Zi|
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Take a QR decomposition of Z; (k =0,---, K),
Zx = Qr R (10)
then following the results [7],
0¢k
= 2¢; Z 9k imm (11)
o M- M
0°
= 4¢3 i,mm j,mm
83:,6.7:, ¢kmzzlgk, R Zzlgk,],
M M
+ 2¢r [— Z ng,i,mngk,j,nm
m=1n=1
k
+ Z ng imn9k.j, nm} (12)
m=M+1n=1

where g ; mn denotes the (m, n)th element of the N x M
matrix,

Z,
1= QISER (13)
allows us to write,
C aa(x)
¢ - 61‘,‘
= 29 Z Z 9k;,imm (14)
ki=0m=1
5%
Hy 0z;0c;
K M
= & Z l:4 Z Jky,i,mm (Z Z 9ka.j, mm)
k=0 m=1 k2=0m=1
M M
+2 (— Z Z!/kl,i,mngkl,j,nm
m=1n=1
N
+ Z ngl,z,mngklg,nm):l (15)
m=M+1n=1

Equation (15) permits very efficient evaluation of H, be-
cause once QR decomposition of Zy (k = 0,---,K) is
done and the matrices G ; are formed, it is only nec-
essary to collect a few inner products. Although QF
occurs as a factor in (13), the matrix Q; is not explic-
itly formed; instead, Q7 ?aif can be formed by applying
Householder transformations to %'—i"‘- when taking QR
decomposition of 7.

4. SIMULATION RESULTS

The performance of above approach is investigated us-
ing synthesized data from three different scenarios and
it is compared with the traditional MLE method, i.e.
Weighted Least Squares (WLS) method [5], which ig-
nores the correlation of different types of noises and
their inhomogeneity. Target travels in a northern di-
rection at a constant speed of 6.0 kn from the initial lo-
cation that bearing and range equal to 118.1° and 17.0
nautical miles, respectively. The measurement period
T = 2 minutes and at each instant one bearing and
two frequencies (central frequencies are 300Hz, 600Hz
respectively) is generated. The speed of sound in wa-
ter are assumed to be constant ¢ = 3000kn. 1) The
first scenario is a one-leg problem, where the own ship
move in a southern direction at a constant speed of 10kn
and there is a total of 30 measurements at the end of
the track. This problem is characterized by high noise
level (65 = 5.0°, 0y = 0.3Hz), but the different types
of measurement noises are independent. The simulation
result is shown in Table I. The bias and deviation (vari-
ance) of MLE are slightly different from that of WLS.
2) The second scenario is same as first scenario, except
that the noises of different measurements are correlated.
The noise covariance matrix is,

o
0'5 g1 01
2
Q= 01 0’} a9
a1 g9 O

“ntot

where 01 = pogoy, 02 = pojos, 05 =5.0°, 0p = 0.3Hz
and p = 0.9. Table II shows that both the bias and
deviation of WLS remarkably exceed that of MLE. It is
clear that ignorance of the noise correlation will degrade
the performance of estimates. 3) In the third scenario,
the ownship changes its course after 1 hour from south
to east while keeping its speed fixed at 10kn. At the end
of this two-leg scenario, there is a total of 60 measure-
ments available, 30 in each leg. The covariance of noises
is inhomogeneous, while in the first leg it is same as the
second scenario and then changes its value in the second
leg as 05 = 6.0° , 0y = 0.6 Hz and p = 0.5. Observe in
Table I that the deviations of WLS are approximately
two times larger than those of the proposed MLE. Thus,
the proposed MLE which considers the inhomogeneity
of noise covariance improves the performance of estima-
tion. Although two frequency bias of MLE exceed that
of WLS, such bias become not very important as they
are very small compared with the exact values of fre-
quency and the deviations.
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5. CONCLUSION

We have presented and solved the problem of TMA un-
der more general noise assumption that the noises of dif-
ferent type measurements are correlated and covariance
of noises is time-variant. The proposed MLE is efficient
as it is simplified as an optimization problem to min-
imize a determinant criterion which contains no terms
of unknown noise covariance matrix. To obtain such es-
timates, we introduced a Guass-Newton method which
needs only the first order derivatives of model function
to construct the gradient and Hessian, thus it needs less
computations.
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TABLE I

Simulation Results for the One-Leg Scenario

Bias

Deviation

MLE WLS

MLE WLS

-0.1623 | -0.1580

1.9519 1.9249

0.2142 0.2127

2.1447 2.0987

0.4651 0.4377

1.2405 1.1978

2.2452 2.0649

23.4669 | 22.9276

0.0221 0.0197

0.2799 0.2714

0.0539 0.0493

0.5493 0.5313

TABLE II

Simulation Results for the One-Leg Scenario

Bias

Deviation

MLE WLS

MLE WLS

-0.0501 | -0.0589

1.1911 2.0230

0.0121 0.1953

1.6974 2.6358

0.3226 1.1178

0.7725 1.8218

0.1465 0.5428

20.1596 | 31.8039

-0.0004 | -0.0049

0.2336 0.4103

0.0028 | 0.0138

0.4552 0.8167

TABLE III

Simulation Results for the Two-Leg Scenario

Bias

Deviation

MLE WLS

MLE WLS

R (NMI)

-0.0112 | -0.0262

0.4562 | 1.0781

B ()

0.0811 0.0837

1.1461 | 2.0990

v (kn)

0.0030 | 0.08766

0.3241 0.5476

g ()

0.0772 0.3823

3.7597 | 11.5160

f1 (HZ)

0.0011 | -0.0002

0.0553 | 0.1244

f2 (HZ)

0.0026 | -0.0003

0.0843 | 0.2327




