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Abstract

This paper presents a study of blind system identification
using measurements of multiple sensors. The
mathematical model we consider here consists of multiple
FIR channels driven by an unknown common source. We
first show an orthogonal complement system matrix
which is very useful in understanding the multi-channel
system and developing efficient identification techniques.
We then show a fast maximum likelihood method, its
relation to a cross-relation method, and a new method
utilizing a minimum noise subspace. We also report a
study of strict identifiability of the multi-channel system
and its relation to existing concepts.

1. Introduction

Blind system identification using multipe sensors is a
fundamental problem which arises from a wide range of
applications. Recently, it has received a significant
attention in the context of blind channel equalization for
mobile communications. In this application, the
fractionally sampled outputs from the (real)
communication channel can be modelled as outputs of
multiple (virtual) channels driven by input symbol
sequence, and the task is to identify the input symbols
with or without explicitly identifying the impulse
responses of the multiple channels. Despite the recent
attention on mobile communications, this problem is
also useful in other applications such as multi-sensor
seismic signal analysis and multi-sensor image
restoration.

In this paper, we consider a model where the available
data are outputs of multiple FIR channels which are
driven by an unknown input. Assuming a stationary
white input or a stationary colored input with known
source correlations, this model was initially considered in
[1] and [2]. The matrix pencil approach in [1] was then
extended in {7] for colored input with an unknown weak
correlation. The cyclostationary approach in {2] was then
generalized in [11] for an arbitrary source correlation.

For arbitrary nonstationary input, work has been done in
[3-6] and [8]. Liu-Xu et al [3] proposed a cross-relation
(CR) method. Moulines et al [4] proposed a noise
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subspace (NS) method. Shao-Nikias [5] presented an
estimate-maximize based iterative maximum likelihood
(EMML) algorithm. Slock [6] showed an iterative
quadratic maximum likelihood (IQML) method for two-
channels case. Hua [8] independently developed a two-step
maximum likelihood (TSML) method for any number of
channels. This paper reviews some major results shown
in [8] and presents some further developments.

In Section 2, the multi-channel system is formulated. In
Section 3, a very useful orthogonal complement (OC)
system matrix is shown. In Section 4, the TSML method
is described, and its connection to the CR method is
made. In Section 5, the performance of the CR and
TSML methods are evaluated. In Section 6, a new version
of the NS method is shown which utilizes a minimum
noise subspace (MNS). In Section 7, a new concept of
strict identifiability is introduced and related to existing
ones.

2. The M-Channel System

We consider M parallel FIR channels of maximum order
equal to L. The output vector of the ith channel can be
written as

y‘-=ll(‘-)s+w‘.
where y; contains N consecutive output samples of

channel i, i.e., y;=[y;(0), ..., y;(N-1)IT, s contains N+L

consecutive input samples, i.e., s=[s(-L), ..., sN-DIT,
and H;) is a Nx(N+L) Hankel matrix, i.e.,

(LY -
H;y . 3
h; (0)

R(LY -

B (0)

and w; is the noise vector. The output of the M-channel
system can then be put into
T
y=[y1 Yo o yM]

and then
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y=Hpss+w
where
:(n
2
Hy= P
Hou

and w is the system noise vector. Hys is known as a

generalized Sylvester (GS) matrix of order N. It has the
following properties:

Property 1 [1,2,12]: Hy has a full column rank if and
only if the channel transfer functions:

L
Hi@= Y hijk)z’k fori=1,...M,
k=0

do not share a common zero, provided N=L. Furthermore,
rank(HM)<2N, i.e., the rank of a GS matrix of order N is
no larger than 2N.

Property 2 [4]: Let Hyy be constructed from {h'j(k)}.
Then range(H)M ) > range(Hy) if and only if
hj(k)=ah'j(k) for some constant «, provided that N>L+1
and Hyp has a full column rank.

The identification problem is to find the system impulse
response {h;(k)} and the input {s(k)} from {y;k)}.

3. The OC Matrix

The matrix Hys clearly reveals the structure in range(Hpy).

But it does not immediately show the structure in the
orthogonal complement (OC) of range(Hys). To see the

structure of the OC space, the following is useful. Define

Wl =
Gy" = -Ha) “(1)]

Gy =| Fany ) ‘ﬁ:a)
- —E(M) _ﬁ;M)
where ;I(i) is the top-left (N-L)xN submatrix of Hj)
Theorem 1 [8]:
Provided that all channels do not share a common zero

and N22L (or N2>(L+1) for two channels case), an OC
matrix of the system matrix Hys is Gy, i.e.,

Ps +PH =1

where Pg and Py denote the projection matrices onto
range(Gyg) and range(Hyy), respectively

Note that for two channels case (M=2), the proof is
straigtforward and a similar result was shown in [6]. But
for M>2, the proof requires a significant effort and the
theorem is novel. This theorem played a crucial role in
developing the TSML method as described next.

4. The TSML Method

Define a data matix:
Yy | o0
v=vy = Yo | o
' Y(M ) -?(1‘.1 -1)
where

_ Ly - ¥;(0)
Y(i) = : : H
y;(N=1) -+ y;(N-L-1)

Then the TSML method is as follows:
Step 1: Minimize hH(YHY)h with || hl| =1 10 yield he.

Step 2: Minimize hH(YH(GHG)*Y)h with || bl| =1
to yield he, where G is the same as Gy but
constructed from he.

The TSML method consists of two major steps where
each step minimizes a quadratic function, and hence it is
computationally efficient compared to existing algorithms
such as the EMML algorithm [5]. For two channels case,
the TSML method coincides with the IQML method
shown in [6]. Note that Step 1 of the TSML method
interestingly coincides with the CR technique developed
by Liu-Xu et al [3]. It can be shown that Step 1 yields
the exact (consistent) estimate in the absence of noise 3]
or for large data size if the noise is white [10]. It has also
been shown [8] that Step 2 yields a statistically high-
SNR efficient estimate whenever the OC matrix G is
constructed from a consistent estimate of h.

5. Performance of the CR method

The CR method is simply the first step of the TSML
method. It is shown in [10] that if the data length N is
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large orfand the SNR is large, the mean square error
(MSE) of the CR estimate h, is given by

E{"hc I }=N;_,_("2’51 +0%Ey)

where 62 denotes the noise variance, and E Jand Ej are
independent of ¢ and large N. To show an example of
how well the CR method can perform, we consider a two-
channel system where the transfer function of each
channel is given by

H; ()y=(1=’%i =1 Yime f0i -1 )

with i=1, 2, and 01==/11 and 82=n/11+3. Note that §
denotes a separation between the zeros of the two
channels. Let

SNR=20 logw( E{jiwii}

For SNR=45dB and N=30, Figure 1 shows the
normalized-root-mean-square-error (NRMSE) of the CR
estimate versus 8. Also shown in Figure 1 are the
Cramer-Rao bound (CRB) and the NRMSE of the TSML
method. This figure suggests that the CR method can
achieve the CRB when the M-channel system is well
conditioned (i.e., without closely located zeros), and the
CR method does not achieve the CRB otherwise.
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Figure 1

6. The MNS Method

Based on property 2 of the GS matrix Hpy, it was shown
in [4] that the system impulse response can be uniquely
determined by the noise vectors of the data covariance
matrix:

Ry=E{yyH }:HMR,HM +R,

where
R,=E{ss“ }

provided that the source covariance matrix Rg is
nonsingular, the noise covariance matrix Ry, is known up
to a constant, and the conditions of property 2 are met. It
was also shown in [4] that for two channels case, any
single noise vector of Ry is sufficient to yield the unique
solution asymptotically. But for more than two channels,
it was conjectured in [4] that a single noise vector of Ry,
can also yield unique estimate. With the introduction of
the OC matrix Gy, this conjecture can be shown
unfortunately to be wrong.

Theroem 2: No single noise vector of Ry can
asymptotically uniquely determine the system impulse
response for more than two channels case.

Proof: Tt suffices to consider the case where each of Hy
and Ry has a full column rank and Ry, is absent. A noise
vector v of Ry must be a linear combination of columns
of GM, i.e., v=Gpa for some vector a. If v determines
{hij(k)} uniquely, {h;(k)} must be the unique solution to
(based on the NS principle)

H =
v HM-O

This equation can then be expressed (after a lightly
tedious manipulation) as

K7 Q=0

where h is the M(L+1)x1 vector of {hj(k)} and Q isa
M(L+1)x(N+L) GS matrix of order L+1. From Property
1, rank(Q)<2(L+1) and hence the above equation has no
unique solution for M>2.

We can conjecture, however, that for the M-channel
system the minimum number of noise vectors required is
M-1. The M-1 noise vectors must be chosen properly. In
fact, each of the M-1 noise vectors can be found by
computing the least eigenvector of a covariance matrix
corresponding to a distinct pair of channels. Since each
such noise vector can determine the impulse responses of
a distinct pair of channels uniquely up to a constant, the
M-1 noise vectors can determine the impulse responses of
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all M channels uniquely up to a constant. The M-1 noise
vectors can be obtained in parallel as shown below (for
M=3):

v t— — R (12>,
A
"3“"_\
> B —
CE Rl

Figure 2

Also note that each such noise vector is computed from a
smaller covariance matrix than Ry. This MNS
(minimum noise subspace) method is more efficient in
computation than the original NS method [4]. A detailed
performance analysis of this approach will be shown in
our future communications.

7. Strict Identifiability

Channel identifiability conditions have been recently
investigated by several researchers. Assuming that the
input to all channels is white, stationary and infinitely
long, Tong et al {1] and Li-Ding [2] studied the channel
identifiability conditions based on the second order
statistics of the channel outputs. Assuming that the input
is an unknown deterministic sequence, Liu-Xu et al [3]
showed a number of sufficient and necessary
identifiability conditions based on the cross-relation (CR)
equation. This problem was further considered by Hua [8]
where the channel identifiability conditions were analyzed
based on a Fisher information (FI) matrix. An M-channel
system is defined to be FI identifiable if and only if the FI
matrix has a desired rank.

More recently, we studied the identifiability of the M-
channel FIR system in a strict sense. An M-channel FIR
system is defined to be strictly identifiable if the given
channel outputs, in the absence of noise, can only be
realized by a unique system impulse response and a
unique input sequence. In contrast to several existing
definitions of identifiability, the strict identifiability is
independent of any identification technique or any
preprocessing on the channel outputs. Among several
fundamental observations made in [9], we have found a
surprising fact that the CR identifiability, the FI
identifiability and the strict identifiability are equivalent
to each other provided that the number of the output
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samples of each channel is no less than twice the
maximum order of the FIR channels.
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