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ABSTRACT

A generalized covariance expression for time difference
of arrival (TDOA) estimators is derived for an M-sensor
arbitrary array in a two-path underwater environment.
The resulting expression can be reduced to the variance
and covariance expressions developed previously.

The correlation among the time difference of ar-
rival estimators and its effect on a localization error
are investigated for a two-sensor vertical array. The
results show that the correlation among the multipath
TDOA estimators is significant and the degree of corre-
lation depends on the power spectral density of source
signal and that of noise, and only on two multipath
TDOAs. Because of this correlation, every TDOA esti-
mate contributes information to localization and there-
fore a whole set of TDOA estimators should be used.

1. INTRODUCTION

The localization studied in this paper is a “sonobuoy
type sensor system in an underwater acoustics envi-
ronment. A bibliography of work done in this area is
available in [1].

Research done in [2, 3, 4] has shown that local-
ization in multipath dominant environments can yield
more accurate estimates than localization in a direct-
path-only propagation environment. For conventional
estimators, the statistical uncertainty in the localiza-
tion is closely related to the accuracy of time difference
of arrival (TDOA) estimators. Therefore, calculation
of the covariance matrix for the TDOA estimators is a
key problem for determining the statistics of localiza-
tion error.

A recent study of a two-sensor system [5] has shown
that available expressions for variances of range and
depth estimators can be in error by a significant fac-
tor if the correlation among the TDOA estimators is
ignored. This paper investigates the correlation among
the TDOA estimators and its effect on localization for
an M-sensor arbitrary array in a two-path environ-
ment.
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2. TIME DIFFERENCE OF ARRIVAL
ESTIMATION
2.1. Signal and Noise Models

Consider a scenario where an M-sensor array is sub-
merged in a direct and surface-reflected environment.
It is assumed that the sound speed profile is constant
and the ocean surface is a pure reflector. Under these
assumptions, the surface-reflected paths can be viewed
as the signals collected by virtual sensors located above
the ocean surface.

The received signals at sensor m is given by

™m(t) = 9a.8(t — Da, )+ gs,.5(t = D;..) + np(t)
forme {1,2,...,M}, (1)

where s(t) is the signal radiating from the source, np,(t)
is the noise received at sensor m, subscripts d,,, and s,
indicate the direct and surface-reflected paths to sensor
m, D; is the time delay for the sound to travel from
source to sensor along path k, and g; is the attenua-
tion experienced by the signal in traveling path k for
k € {di,ds,...,dpm,51,52,...,sm}. The source signal,
s(t), and the noise, n, (), are assumed to be stationary,
uncorrelated, zero mean, jointly Gaussian random pro-
cesses with known broadband spectral densities S(w)
and Ny, (w) respectively.

The geometric information of the source location is
fully encoded in the time differences among the path
delays Dg,, Dg,, ..., Da,,, D,,, D,,, ..., D,,,. These
TDOAs are denoted by a double subscripted D, for
example D, 4, for difference D,, — Dy, .

2.2. Multipath TDOA Measurements

The TDOAs are the parameters in M autocorrela-
tion functions and -Aﬂ%;l) cross-correlation functions
for an M-sensor system. The autocorrelation function
of the signal collected by sensor m is given by

Runn(7) = B {rm(t)rm(t = 7}
= (0 + 02 )RT) + antin (R.<f t D)+
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Ru(r - de,m)) + R (), @)

where m € {1,2, ..., M}, E{e} denotes the expected
value, R,(7) and R, (7) are the autocorrelation func-
tions for the source signal, s(¢), and noise, nn(t), re-
spectively, and the TDOA Dy, is given by the dif-
ference Dy, — D;,,

The cross-correlation function of two signals received
at sensors m and n is

Rnn(7) = E{rm(t)ra(t —7)}
= 94,94 Re(T — Did,) + 9dm 95, Bs(T — Dips,) +
Ism9da Ra(T = Dspdy) + 9595 Bs(T — Dy 5,)
(3)
for m,n € {1,2,..., M} with m # n. Since there is
one unique TDOA parameter in each autocorrelation
function and four unique TDOA parameters in each
cross-correlation function, the total number of TDOAs
is M(2M - 1) for an M-sensor array in a direct and
surface-reflected (or bottom bounce) environment.

It is noted that the positions of the peaks in the
auto- and cross-correlation functions will not corre-
spond exactly to the TDOAs due to the superpositions
of correlograms. The positions of the peaks are de-
noted by including superscript b on the TDOAs, for
example, D , 4,» Which indicates the peak is biased or
shifted from D’ldl

The time average auto- or cross-correlation func-
tions, Rm,,(r) are given by

T
Ron(r) = % /0 rm@)ra(t = T)dt (4)

for m,n € {1,2,..., M}. If the TDOAs are resolvable,
then they can be estimated from (4). The average is
taken over finite time and the noise will affect the po-
sitions of the peaks.

For a large time-bandwidth product, the variances
of the TDOAs estimated from an auto- and cross-correlator
are derived in [6, 7]. The expressions given in [6, 7]
yield the M(2M — 1) variances which form the diago-
nal elements of the M(2M - 1) x M(2M — 1) TDOA
covariance matrix for an M-sensor system in a two-
path environment. The covariance expression for the
TDOAs estimated from M auto- and M%——Q cross-
correlators is derived in this paper.

III. CORRELATION AMONG MULTIPATH
TIME DIFFERENCE OF ARRIVAL
ESTIMATORS

3.1. Generalized Covariance Expression
To get an analytical expression for the covariance
of the TDOA estimators, the derivative of the time

average auto- or cross-correlation function is approxi-
mated with a first-order Taylor series expansion about
the peak positions D? aja fOT 6, € {d,s} and m,n €
{1,2, ..., M}, which dlﬁ'er slightly from TDOAs D,m,”
due to superp051tlons The Taylor series approxima-
tion is set to zero and then solved to get an equation
relating the error in the position of the peak to the first
and second derivatives of the time average correlation
function. The resulting expression for error is

ML-D»
Db Db ~ 4T T imin (5)

imjn imin d?Rmn£12| _p»
dr T=

tmin

This error is given by the ratio of two random vari-
ables, however, the denominator has a small coefficient
of variation.

Using (5) to get an approximation for the product
of two errors and then taking the expectation produces
a covariance expression which can be a.pproximated by

COV{ (ﬁé j —Df,,.J,.) (132: ‘lec,xq) }

Rmn!‘Tl!I 23!1-2!' .
dr) n=D} . T dr; ITa= r‘q (6)
B2 Rpun(r1) d’RHIgr )
{ ‘;;'12 - |T1—D:’mn dr3 . I-r::D:’,q}

for 1,j,k, 1 € {d,s} and injn # kpl;. Note that in
this special circumstance, the expected value of the
quotient is approximately equal to the quotient of ex-
pected values. The denominator is the product of two
random variables each with a small coefficient of varia-
tion. Therefore the product has a vary small coefficient
of variation and can be considered a constant. The
value of this constant is given by the expected value of
the product.

The generalized covariance expression (6) can be
expressed in terms of the power spectral densities of
the signals received at sensors m, n, p, and ¢, using the-
approach given in [5]. The resulting expression is

- 27
Cov{ (Dinjn — Dinin)s (Diyiy — Dryt,) } = T X

w .
(/ 2 Synp (~10) Sy (w)e ™ ¥ Plmin~Phyie) g —

-0

00 : b b
/ wZqu(-—w)S,,p(w)e"Jw(D‘min+D"p'q)dw) +

-—00

(/ w25'm,,(w)ej“’D?mJ’n dw x

-0

) .
/ w?Spg(w)e’ ™ Phrta dw) , (7)
~00

where i,j,k,1 € {d,s}, m,n,p,q € {1,2,..., M}, and
the double subscripted S indicates the auto- or cross-
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power spectral density for rp(t), ra(t), rp(t), or/and
rq(2).

Expression (7) is consistent with known expressions
for the variance and covariance of TDOA estimators de-
veloped previously. It can be shown that if under the
simplified condition that all paths experience the same
attenuation, then equation (7) can be simplified to vari-
ance and covariance expressions derived by Hahn in
1975 (reprint given in [1]). Hahn’s results is for a direct-
path-only environment where the structure of the re-
ceived signal power spectra is much simpler. Equation
(7) can also be specialized to variance expressions for
multipath TDOA estimators developed in [6, 7] and
covariance expressions given in [5, 8] for a two-sensor
array in a two-path environment. It is shown in [8] that
the correlation among the TDOA estimators for a two-
sensor array depends on only two multipath TDOAs,
specifically the time difference of arrival between the
direct and surface-reflected path for each of the two
Sensors.

IV. EXAMPLE CORRELATION AND
EFFECT ON LOCALIZATION

The significance of correlation among the TDOA
estimators is illustrated through an example. A two-
sensor vertical array is used with sensor depths 200
and 400 meters. The source depth is taken to be 500
meters. The source range is varied from 500 meters
to 10,000 meters. The acoustic source and ocean noise
are assumed to have flat broadband power spectra with
bandwidths 400 Hz. The ratio of source intensity (at
the source location) to received noise intensity (SNR)
is taken to be 80 dB. This yields an SNR of —2.2 dB for
the direct path when the source range is 1,000 meters.
The correlation coeflicients are calculated from a Monte
Carlo simulation with one hundred independent trials.
A least-squared range estimator (given in [5]) is used
to show the effect of correlation. Only 25 of the 100
trials are used to estimate the variance of the range
estimator.

Figure 1 illustrates the covariances for TDOAs es-
timated from two autocorrelators for ranges from 500
to 10,000 meters. The simulation results are indicated
by the point marked “0”. The error bars associated
with an estimate indicate the 95 percent confidence
interval. The curve represents the theoretical calcu-
lation. The average difference between the theoretical
and simulation-based coeflicients over the 10 ranges is
only 0.006 which suggests the simulation results sup-
port the theory.

Figure 2 shows the coefficients among the 4 TDOAs
estimated with a cross-correlator. The 4 TDOA es-
timates are denoted Dd,d,, D,‘,,, f),ld, and Dd,,,
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Figure 1: Correlation coefficients among the TDOAs
estimated from the two autocorrelators.

(Dd, 4, 18 the TDOA between the direct Qath to sen-
sor 1 and the direct path to semsor 2, D, ,, is the
TDOA between the surface-reflected path to sensor 1
and the surface-reflected path to sensor 2, etc.). The
solid and dashed lines at the bottom represent the the-
oretical coefficients PDa,ayDurs and PD, 4, Da,., TESPEC-
tively. The corresponding simulation results, indicated
by marks “4” and “*” respectively, agree well with the-
ory. The coefficients for these two pairs are large, up to
—0.99. The other four curves which are coded by solid,
dashed, dotted and dashdot lines express the theoret-
ical coefficients pﬁ'u:Ddxw’ pﬁdldzﬁ'x"z’ p[),‘ldnl?‘l'z
and PDy sy Daya, respectively. The corresponding simu-
lation results are indicated by marks “0”, “x”,“+” and
“x” respectively. The 95 percent confidence interval
bars have not been plotted to keep the plot from be-
coming busy. Again, it can be seen from Figure 2 that
the simulation results generally support the theory.

Figure 3 compares the theoretical variances with
the simulation-based variance for a least-squared range
estimator. The theoretical variances (solid and dashed
lines) are calculated using full and diagonal covariance
matrices respectively. The simulation-based variance
(dotted line) includes the effects of correlation in the
TDOA estimators. The simulation results, found at
100 meter interval, are connected by straight lines. It is
shown in Figure 3 that the two theoretical variances dif-
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Figure 2: Correlation coefficients among the 4 TDOAs
estimated from a cross-correlator.

fer by as much as a factor of 3.3. The simulation results
agree with the theoretical curve calculated with the full
covariance matrix. The ripple in the simulation-based
variance curve is primarily due to the small number of
trials (which is 25) used to calculate each point.

V. CONCLUSIONS

The generalized covariance expression derived in
this paper can be used to compute the covariance ma-
trix of the TDOA estimators associated with an M-
sensor arbitrary array in a two-path underwater envi-
ronment as well as in a direct-path-only environment.

It is shown for a two-sensor system in a direct and
surface-reflected environment that the correlation among
the TDOA estimators depends on the power spectral
density of the source signal and that of the ocean noise,
and only two multipath TDOAs. In the example of a
flat low-pass source signal given here, the correlation
among the TDOA estimators is significant and is a
complicated function of range showing marked varia-
tion.
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