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ABSTRACT

We present an novel method of fast and accurate es-
timation of frequencies of sinusoids from short data
records of wide-band under-sampled data. By intro-
ducing properly chosen delay lines, and by using sparse
linear prediction [1, 2, 3], our proposed method provides
unambiguous frequency estimates using low A/D con-
version rates. It provides a new way to implement a
digital microwave receiver under these conditions.

1. INTRODUCTION

In this work, we present an novel method of fast and ac-
curate estimation of frequencies of sinusoids from short
data records of wide-band under-sampled data. This is
an extension of our previous results on Sparse Linear
Prediction (SLP) [1, 2] and on the design a sparse array
of electromagnetic or acoustic sensors [3]. Such a digi-
tal receiver implementation can be useful for wide-band
high-frequency applications in wireless communications
and signal analysis systems. In these applications, A/D
conversion and digital signal processing hardware and
software are not sufficiently fast for Nyquist rate pro-
cessing. A significant part of this work is that it pro-
vides a way to implement a digital receiver under these
conditions. Related to our work in its objective is the
paper of Rader [4] on the recovery of periodic wave-
forms from undersampled data. Our work is mainly
concentrated on estimating frequencies of sinusoids.

2. PROPOSED ESTIMATION APPROACH

Let y(t) be a continuous-time waveform consisting of a
linear combination of M exponentials with imaginary
arguments. Figure 1 below shows the configuration of
the system we propose to estimate the frequencies of
the sinusoids from the under-sampled data. The sam-
pling period ¢, might not satisfy the Nyquist sampling
theorem. The main steps of the algorithm are summa-
rize as follows,

This work was supported in part by the Air Force Office of
Scientific Research under contract AFOSR F49620-93-1-0026

3155

M
y(t) = z Cr ef2mint

r=1
kqtg kotg [* = kuto | delay lines
y(t) y(t — kito) | y(t — kato) y(t — kmto)
A/D AD AD | * AD
1 I 1 1
sampling period tg

Forward Backward Sparse Linear Prediction (FBSLP) as in [2, 3]
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Figure 1. The configuration of the proposed digital receiver

Step 1. Choosing delays k; to, kato, ..., kumto,
such that k;’s are relatively prime. The value of
to is chosen so that (0, 1/tg) corresponds to the
desired unambiguous frequency band, in which

the incoming waveform y(¢) is assumed to lie, or
to<min{717,...,?1; . -
Step 2. Sampling y(t) and all its delayed versions

y(t—ky to), --., y(t—ky to) with sampling period
t, to form the FBSLP data matrix Y.

Step 3. Solving for vector & from the linear pre-

diction equation Y - [ _lé ] =0.

Step 4. Evaluating angles of the unit circle roots
of the KLP polynomial G(z) = 1312, ak, 2z~
to get the estimates of frequencies.

Note that the sampling period ¢, and the delays k; #o,
ko to, ..., ku to should be chosen such that the rank of
matrix Y is at least M. Then & can be solved from a
M x M matrix equation uniquely in least square sense.
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The formation of matrix Y reveals the rationale
of using SLP to estimate frequencies from the under-
sampled wide-band data. Specifically, the matrix Y is
formed in the following way,

Y=[yoy:r - ym] 1)
with
C {2 +1)ts] ] C (e + 1)t — Kitg] ]
yl(z +2)t,] yl(L +2)t, — ki to]
_ (Nt)] _ [Nty — ki to]
o= w7 Vrke |
y*(2t,] y*[2¢, + ki to)
| (v-r)t,) ] | (-5t + kito] |

1=1,2,..., M.

In other words, columns of Y are formed by sam-
pling y(t), and its delayed versions y(t—k; to), - .., y(t—
ki tg) with sampling period t,. In general ¢, > ¢
holds, even though these time series data are not sam-
pled at high enough Nyquist rate 1/tg, the properly
chosen delays between columns of matrix Y can help
to extract the information about the actual frequen-
cies of the sinusoids in the time series data. Inspired
by the ideas in array signal processing, we can always
decompose matrix Y as follows,

Y=D-M 2)

where columns of D matrix contain the sub-Nyquist
samples of each frequency component of the data; and
rows of M matrix contain the exponentials which indi-
cate the phase shift of each frequency component due
to the use of delay lines. When the values of delays and
sampling period are chosen such that the matrix D is
of full rank, the frequencies can be estimated by first
solving a from the following FBSLP equation

then rooting the KLP polynomial

G(z)=1- Zak; 27k (4)
i=1

The only possible ambiguity is caused by the use
of large delays. Therefore, the method of resolving
ambiguities we used in [2] can also be used here for
resolving the ambiguities due to the large delays. As
proposed in [2], in order to resolve this ambiguity, an
additional KLP polynomial should be formed by solv-
ing another set of FBSLP equations, with another set

of delays ) tg, latg, ..., luto (see Figure 1). The cri-
terion to choose delays proposed in [2] could also be
used for this generalized case.

2.1. SINGLE SINUSOID CASE

In the case of single sinusoid, we assume that two differ-
ent values of delays 71 = k; tg and 7{ = I ¢y are used.
The delay integers k; and !; are chosen to be relatively
prime, or (k;, §;) = 1. The continuous-time waveform
y(t) and its delayed versions y(t—7;), y(t—77) are sam-
pled at sub-Nyquist rate 1/¢;, where t;, > tp holds in
general. Using waveforms y(¢) and its delayed version
y(t—71), the data matrix Y, which is used in the sparse
linear prediction, can then be decomposed as follows,

[ y(t) oyt —m)
y(2t,)  y(2t, —7)

| y(vt) (vt —m)

[ clejzﬂfltn (5)
ej21l‘f12t,
-2 1 ed2mhn |

~ s

: gl
Clej27rf1Nt, M,

~ /s
—

D

Note that the matrix D is always full rank. Therefore,
we have the following equivalent equations,

1 1
v [ 1 ]=0 o [ L]0
In other words, since 7, = kj tp, the frequency of the
sinusoid can be estimated by evaluating the unit circle
zero of the KLP polynomial defined by

Gi(z)=1—ay, 278 ’ (7)

where ay, is solved from (6) in the least square sense.

As mentioned in [2, 5], in order to reduce the noise
sensitivity of the frequency estimator, large value of
delay integer k; is chosen. This will cause ambiguity
in determining the frequency from the unit circle zero
of the KLP polynomial G;(z). Since there will be k;
unit circle zeros, among which the true signal zero lies.
Following the same procedures of resolving ambiguity
proposed in [2], we can use y(t) and the other delayed
waveform y(t — 77) = y(t — I; ¢¢) to form a second set
of sparse linear prediction as (6),
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with My = [ 1 e 727171 ]. Then we can get a sec-
ond KLP polynomial after solving for a;, from (8),

Ga(z) =1—ay zh (9)

Since the values of the delay integers k; and l; are
chosen to be relatively prime, the true signal zero is
given by the only common unit circle zeros of both
KLP polynomials G;(z) in (7) and G2(z) in (9).

When noise is present, we can form an equivalent
objective function by combining both KLP polynomials
as follows,

P(f) -

IGu(errm I to) P 4 Galed ) [

(10)

Then the frequency of the sinusoid can be estimated by
search for the global maximum of the above P(f).

In practice, when the available data record is fi-
nite, there exist limitations on the choice of sampling
period ¢, delays k; to and I; tp. Small values of sam-
pling period ¢, can help to get more LP equations, but
it is limited by hardware and software speed. Large
values of delays ky to and !y tp can help to get better
frequency estimates [2, 5], but they are limited by the
available data record length. We will provide detailed
simulation results in the later sections.

2.2. TWO SINUSOID CASE

When the received waveform consists two sinusoid com-
ponents, we need an additional delayed waveform to get
different phase shifts, which are necessary to extract
the frequency information. Choosing one set of delays
71 = kit and 12 = ks tg, we sample the continuous-
time waveform y(t) = c¢; €727 N1t 4 ¢ 927 f2¢ apd its
delayed versions y(t—) and y(t—») at arate 1/t,. We
then decompose the data matrix Y, which is needed to
form the sparse linear prediction equations, as follows,

y(ts) y(ts — 71) y(ts — 72)
:‘/(2 ta) y(2 ts — 1) y(2 ly — 72)

YNt gVt —7) (Nt —T)

(11)
62 ej2"f2 t-
C2 ej2"f22zu

with D=
clej?"rletl C2ej27rf2Ntl
d M, = 1 e—j21rf1'r1 e—j'..’n[lrg
an 1= 1 e—i2nfam e~i2nfam2

If the matrix D in (11) is full rank, the we have the
following equivalent equations,

1 1
Y-[—ah}zo — Ml-[——akl]=0(12)

—ak2 ——ak2

But due to the effect of under-sampling in matrix D,
the matrix D will become rank deficient whenever | f2—
fil = r/ts, where r is any integer. In this work, we solve
this problem by using a swept sampling scheme, which
will guarantee the full rank of the D matrix. Then the
frequencies can be estimated by solving for [ak, ax,]"
from (12) followed by rooting the KLP polynomial

Gi(z) =1—ag, 27 —ay, 27%2. (13)

Similarly, in order to resolve possible ambiguities due
to the use of large delays and SLP, another set of de-
lays 71 = lito and 15 = Il tg is chosen following the
same criterion in {2]. After solving for SLP coefficient
[as, a;,])7, an additional KLP polynomial is obtained
as,

Ga(z)=1—ay z7h —q, 27", (14)

Then the frequencies can be unambiguously estimated
from the only two common unit circle zeros of these two
KLP polynomials. Or by combining both KLP polyno-
mials as in (10), we can also unambiguously estimate
the frequencies from the distinct peaks of the objective
function P(f) in (10).

3. SIMULATION RESULTS

Simulation results using the proposed FBSLP method
to estimate frequencies of sinusoids from under-sampled
data are shown in Figure 2 through Figure 4. In these
examples, the sampling period is assumed to be t, =
11, but the required Nyquist sampling rate is 1/t = 1.
Figure 2 shows the results of a single sinusoid case. The
results of two sinusoid case are shown in Figure 3 and
Figure 4. Figure 3 shows the high resolution ability of
proposed method in resolving two closely spaced sinu-
soids. Figure 4 shows its ability of resolve wide-band
ambiguities in resolving two widely spaced sinusoids.
All the plots are superimposed results of 50 indepen-
dent trials. The true signal zeros are shown by arrows
and true signal frequencies are shown by dashed lines.
Note that in all these cases, ambiguities might occur
in individual KLP polynomial ( see Figure (a)’s-(d)’s ),
When both KLP polynomials are combined together,
no more ambiguity is observed in Figure (e)’s. The
frequencies can be estimated from the co-ordinates of
the distinct peaks of the objective function P(f) in
Figure (e)’s, which combines both KLP polynomials.
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Figure 2. P(f) and root positions of polynomials G1(z) =
1—as27° and G2(z) = 1 — as 27% in the case of a single
sinusotd. Parameters: N =18, t, =11, tc =1, SNR =
10db, wy =270.5.
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Figure 3. P(f) and root positions of polynomials G,(z) =
l—apz B —ayuz"andGez) =1-—as2%—ag 28
in the case of two sinusoids. Parameters: N = 18, t, =
11, to=1, SNR =10db, w; =27 0.5, w2 = w; +21rﬁ.
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Figure 4. P(f) and root positions of polynomials G1(z) =
l—apz P —apuzMand Ge(z) =1 —-as 2% —agz78
in the case of two sinusoids. Parameters: N = 18, t, =
11, t0=1, SNR=10db, w1 = 270.25, we =w) + 7.

4. CONCLUSION

A fast and accurate method of estimating frequencies
of sinusoids from wide-band under-sampled data is pro-
vided. The importance of this work is that it signifi-
cantly reduces the hardware/software cost in many ap-
plications such as cellular and mobile communications
and RF electronics, where Nyquist sampling is almost
impossible.
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