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ABSTRACT

The explicit time delay estimator (ETDE) provides an
efficient way to estimate the time difference of arrival
between signals received at two. separated sensors.
However, the algorithm is biased for finite filter length and
the delay bias increases when the signal-to-noise ratio
(SNR) or the number of filter taps decreases. In this paper,
we add an adaptive gain control to the ETDE to decouple
the effect of changes in the SNR during adaptation. As a
result, a smaller delay variance and an unbiased delay
estimate for a wide range of filter lengths can be attained.
Computer simulations are presented to validate the
theoretical derivations of the proposed estimator for static
and linearly time-varying delays under both stationary and
nonstationary signal/noise power environments.

L. INTRODUCTION

The estimation of the time delay between the outputs
of two spatially separated sensors has found important
applications in sonar, radar, global positioning system
(GPS), biomedical engineering and so on [1-3]. For
example, in GPS, the location of an interfering transmitter
which tampers with satellite operations can be determined
using the differential satellite path delay measurements [3].

The two received signals are
x(k) = s(k)+n,(k)
y(k) = stk =D(k))+nyk)

where the source signal s(k) and the corrupting noises n,(k)
and n,(k) are Gaussian, stationary and mutually
uncorrelated white processes. Without loss of generality,
we assume that the signal and the noise spectra are
band-limited between —% and ® while the sampling period

is unity. The signal power is represented by ¢? while o2

denotes the power of n,(k) and n,(k). The objective is to
estimate the time difference of arrival, D(k), which may be
time-varying, from x(k) and y(k).

(12)
(1b)

Recently, a new adaptive structure called the explicit
time delay estimator (ETDE) [4-6] has been proposed for
the TDE problem. It has two obvious advantages over the
conventional generalized cross correlation (GCC) methods
[7,8]. Firstly, it does not require spectral estimation of the
transmitted source nor the noise signal. Secondly, it can
track nonstationary delays due to the relative motion
between the source and the sensors. The ETDE is similar
to the least mean square time delay estimator (LMSTDE)
[9,10] in the sense that they both model the time delay by
using an FIR filter. But unlike the LMSTDE where the
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estimated delay is obtained indirectly by interpolating the
filter coefficients, the ETDE updates the delay estimate
directly and involves no interpolation in the adaptation.

In this paper, we examine the performance of the ETDE
rigourously, particularly its biasedness under low SNR
conditions. It will be shown that the delay bias is a function
of the SNR, the number of filter taps and the actual delay.
By adding an adjustable gain control to the ETDE as shown
in Figure 1, it is proved that the delay estimate of this
proposed estimator is unbiased for all finite filter lengths
and is independent of the SNR. We call this an explicit time
delay and gain estimator (ETDGE). Theoretical analysis
also shows that the improved algorithm will give smaller
variances at low SNR for both static and nonstationary
delays and this is confirmed via simulation results.
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Figure 1 A generalized explicit time
delay and gain estimator (ETDGE)

II. BIASEDNESS OF THE ETDE

From Figure 1, if we fix & = 1, we obtain the
configuration for the ETDE [4]. The filter coefficients of
this estimator, {sinc(i —D(k))} for -P<i<P, are a
function of the delay estimate, D(k), only. From the
convolution theorem, this filter will provide an exact time
lag of D(k) to x(k) when infinite filter length is used. The
delay modeling error due to the finite filter length, 2P+1,
has been discussed in [11] and it has been proved that the
truncation error decreases as P increases. The output error,
e(k), is given by

e(k) = y(k)—l_i sinc(i = D(k)) x(k — i) (2)
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Similar to Widrow’s LMS algorithm, the ETDE uses a
stochastic gradient estimate which is obtained by
differentiating the instantaneous square error, eX(k), with
respect to D(k). The estimated delay is updated at each
iteration according to

X R de(k
Dk+1) = D(k)—ué—%%k—;

A P A
= D(k)-2pe(k) _=2_Px(k =i fi-Dk)y 3)

where f(v) = (cos(mv)—sinc(v))/v and [ is a parameter that
controls convergence rate and stability of the algorithm.

We shall first analyse the performance of the ETDE
assuming that D(k) is a constant of value, say D. When P
is chosen sufficiently large, it has been shown in [4] that
D(k) is unbiased as k goes to infinity. However, in practice,
a finite filter length is used and in this case the delay
estimate is usually biased. It is well known that the mean
delay estimate, which is denoted by D, should correspond
to the global minimum of the performance surface £ {e*(k)}
where E represents the expectation operation. By
differentiating E{e’(k)} obtained from (2) with respect to
D and then equating the result to zero, we obtain the

relationship between D, D, the SNR and P as

i sinc(i = D) fi ~D) =

i=-P

P —— —
(1+SNR™) ¥ sinc(i -D) f(i—D) )
i==P
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Figure 2 Delay bias versus D

SNR (dB)
-20 0 20 40
5 | 2364x10" | 2.101x10? | 2.126x10* | 2.126x10°
P 50 | 1.327x10" | 1.947x10° | 1.947x10° | 1.947x107
500 |1.923x107 ] 1.936x10* ] 1.936x10* | 1.936x10°®
5000 |1.935x107 | 1.935x10° | 1.935x107 | 1.935x10°

Table 1 Delay bias versus P and SNR at D = 0.25

Although a closed form solution for D is not available,

numerical values of D can be found by using
Newton-Raphson method to reveal the effect of different
SNR and P on D. Plot of the delay bias, which is defined

as |D-D], versus D for SNR = =10 dB and P = 15 is
shown in Figure 2. It can be seen that the bias is largest
at D = 0.2, which is 0.066. However, the delay error
decreases when SNR or P increases and it becomes
negligible under high SNR conditions. Moreover, the shape
of the plot may change as SNR or P varies. Table |
illustrates the variation of the delay bias against SNR and
P for D = 0.25. It is observed that the bias can be reduced
by one-tenth approximately by either increasing the SNR
by 10 dB or by a ten-fold increase of P. This undesirable
delay bias in many instances may produce an unacceptable
large mean square delay error for the ETDE.

II1. THE ETDGE

It can be easily shown that the optimal weight vector
or the Wiener solution is sinc(i-D)SNR/(1+SNR) which is
obtained by releasing the constraint imposed on the filter
coefficients of the ETDE. Therefore, an improved version
of the ETDE is proposed by adding a variable gain control,
ol(k), in series with the delay estimator as depicted in Figure
1, in order to track the factor SNR//+SNR) separately so
that the minimum MSE can be achieved. In the ETDGE,
the error signal, e(k), becomes

() = yk)—=6(k) 3. sincli— Dk — i) )
i=-P

Partial differentiating E{e*(k)} with respect to & and D
yields

dE{e"(k)} _ 2&((-5?4.0’2’) i sinc’(i - D)
aa N i=—P
26> 3 sinc(i-Disinc(i~-D)  (6a)
i=-P
OELe W)} _ 2667 S, sinc(i —D)f(i - D)
oD fizop

—2&2(0f+02n)£ sinc(i = D)f(i = D) (6b)

i==P

Putting (6) to zero, it is easy to see that the global minimum
occurs when & = SNR/(1+SNR) and D = D. That means
the delay estimate of the ETDGE is unbiased for any finite

P and is independent of the SNR.

While D(k) is adjusted according to (3), the gain
parameter of the ETDGE is adapted explicitly and
independently at the same time. The updating rule for k)
is given by

ak +1) = (k) +2u,ek) i x(k =i) sinc(i —Dk)) ()
i=-P

where |1, is the step -size for k).
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Substituting (1) and (5) into (3) and taking the expected
value, we obtain

E{D(k+1)}=

I ==

E{D(k)} - 2uofE{ 3 sinc(i-D)ft —D”(k))}

+2GT+ E{ 640§ sinci - DG -DEN| B

Since XF__,sinc(i —=D)f(i - D(k)) = f(D-D(k)) when P

i =

tends to infinity and f0) = O, therefore
E{D(k+1)} = E{D(®)}-20,E{f(D-DKk)} )

Thus the learning characteristics of the delay estimate for
the ETDGE is the same as that of the ETDE [4] and is
unaffected by a(k) when P is large. The convergence
behaviour of D(k) is given as

E{D()} = D +(D(©0)-D)(1 -2uc’n3)’ (10

where D(0) is the initial delay estimate. When D(k)
converges to D, the learning trajectory of E{o(k)} can be
shown to be

E{8(k)} = o+ (640) — o) (1 - 2u(0? + 02" (11)

where o = SNR/(1 +SNR) and o(0) is the initial gamn value
which lies between O and 1.

To evaluate the performance of the ETDGE, we follow
the te:dious derivations in [5] to obtain the delay variance,
var(D), which is given by

po(1+2SNR)

12
SNR? 12

var(D) =
Comparing var(D) with the variance of the ETDE, which
is approximated by 2uc?(1+SNR)/SNR? [5], it can be seen

that they are identical and equal to 2uc?SNR when SNR
>> 1. However, when SNR << 1, the delay variance of the
ETDGE equals to ucSNR? which is only half of that of
the ETDE.

Now replace D by D(k) = D+Bk where B is the

Doppler time compression, and using (9), we can obtain
the convergence dynamics for a linearly time-varying delay

(6],
E{D(k)} = D+pk- 3B

2uoin?

5

Ao 3p 2 ,,f
.(D(O) D+2u0fn2)(1-§uo§n] (13)

Upon convergence, the last term vanishes and E{D(k)} lags
D(k) by the third term which is directly proportional to B
and inversely proportional to i and . The mean square

error of D(k), &(D), is equal to the delay variance plus the
square of the time lag, which is given by

5 ~u0'_f(1+2SNR) 3V
€Oy =—gr " 2uorn’

(14)

Notice that it should be smaller than the mean square error
of the ETDE [6] since the ETDGE has a smaller delay
variance.

IV. SIMULATION RESULTS AND CONCLUSIONS

Simulation tests have been carried out to evaluate the
performance of the ETDGE for both static and
nonstationary delays. In our experiments, the sequences
s(k), ny(k) and n,(k) are produced by a random number
generator of Gaussian distribution with a white spectrum.
The signal source has unity power and different SNRs are
obtained by proper scaling of the random noise sequences.
To demonstrate that the ETDGE is unbiased for all filter
lengths, P is chosen to be 15 in the ETDE but it is reduced
to 3 in the ETDGE. The initial values of the gain and delay
parameters are arbitrary set to 1 and O respectively. The
results provided are the averages of 200 independent runs.

Figure 3 compares the convergence characteristics of
the ETDE and the ETDGE when D(k) = 0.3, SNR = -10
dB and all step sizes were assigned to be 0.00002. As
expected, both algorithms gave the same delay adaptation
rate and they converged approximately after 30000
iterations. The delay estimate obtained by the ETDGE was
very close to the optimal value of 0.3 whereas that of the
ETDE was 0.35, which had a bias of about 0.05 and was
confirmed by the results as shown in Figure 2. The gain
parameter also converged to the desired value, 0.09, which
corresponded to a SNR of —10 dB. Furthermore, the
variances of the delay estimate of the ETDE and the
ETDGE were found to be 0.0033 and 0.0014 respectively.
This illustrates that a much smaller delay variance can be
achieved by using the ETDGE.

The tracking performance of the ETDGE for D(k) and
a(k) are shown in Figure 4 and Figure 5 respectively. In
this test, the actual delay was a linearly time-varying
function which was given by D(k) = 0.25 + 0.0001%. The
SNR was initially set at 10 dB and then step-changed to
~10 dB at the 5000th iteration. In order to cope with the
nonstationary environment, B and p, were selected to a
larger value of 0.0002. It can be seen in Figure 4 that after
approximately 2000 iterations, the delay estimate converged
and lagged D(k) by 0.087 at SNR = 10 dB and 0.11 at SNR
= —10 dB. Due to the approximations in deriving (13),
discrepancies of 0.011 and 0.034 from the theoretical value
are found when SNR = 10 dB and SNR = -10 dB
respectively. The delay variances measured at the high SNR
and low SNR conditions were found to be 0.0073 and 0.037
respectively. In Figure 5, a(k) converged to 0.91 and 0.09,
which were their desired values, at the 4000th and the
7000th iterations respectively. From (11), it is observed the
time constant of the gain estimate decreases as the noise
power increases. This was validated since the learning rate
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of a(k) at SNR = —10 dB was much faster than that in the
high SNR condition.

In conclusion, the ETDE is shown to be a biased
estimator and the corresponding delay error decreases as
the number of filter taps or the SNR increases. By adding
an adaptive gain control to the ETDE, an unbiased delay
estimate for all practical filter lengths can be achieved with
a smaller delay variance. Theoretical performance for both
static and linearly time-varying delay estimates are given
and corroborated by simulations.
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