Performance Analysis Of Integrated Polyspectrum Based Time Delay Estimators

Yisong Ye Jitendra K. Tugnait
Dept. of Electrical Engineering, Auburn University, Auburn, Alabama 36849, USA

ABSTRACT

The problem of estimating the difference in arrival times of a non-Gaussian signal at two spatially separated sensors is considered. The signal is assumed to be corrupted by spatially correlated Gaussian (or a class of non-Gaussian) noise of unknown crosscorrelation. We analyze the asymptotic performance of some recently proposed differential time-delay estimators which exploit the integrated polyspectrum of the measurements. The proposed estimators are asymptotically maximum-likelihood when attention is confined to the integrated polyspectra of the measurements. Therefore, the performance of the estimators approaches the Cramer-Rao (CR) bound asymptotically. Expressions for the relevant CR bound are derived. Computer simulations are presented comparing actual performance with the CR bounds for a simple example.

1 Introduction

The estimation of time delay between received signals at two (or more) sensor locations remains an important task in several fields such as sonar, radar, biomedicine, and geophysics [1]-[6]. In passive sonar e.g., the time delay is used to estimate the position and the velocity of a detected acoustic source.

Various methods have been proposed and implemented over the years for time delay estimation [1]-[6]. In [6] we presented two new frequency-domain approaches for differential time-delay estimation using bispectrum or integrated bispectrum. The objective of this paper is to analyze the performance of the estimators of [6]. We also provide some modifications and corrections to [6]. Compared to the time-domain approaches of [2] and [3], [6] does not need the input to be a linear process for consistency to hold true. Consistency of the time-domain approaches of [1] remains unproven, in general [2]. Compared to the bispectrum-based frequency-domain approaches of [1], our approaches of [6] are asymptotically optimal in that we also exploit statistics of the bispectrum (or integrated bispectrum) unlike [1]. Same comments apply when comparisons are made with [5].

2 Model Assumptions

Let $\{x(k)\}$ and $\{y(k)\}$ denote the (discrete time) measurements at the two sensors. Let $\{s(k)\}$ denote the (non-Gaussian) signal and let $n_i(k)$ (i=1,2) be the additive colored noises at the respective sensors. Thus we have

$$x(k) = s(k) + n_1(k), \qquad (1)$$

$$y(k) = s(k+D) + n_2(k),$$
 (2)

where D is the differential time delay (or advance) between the signals at the two sensors. In the above equations, k is an integer and the delay D is a real number. It is assumed that all of the processes involved (i.e., x(k), y(k), $n_1(k)$, and $n_2(k)$) are zeromean and jointly stationary. The signal s(k) is assumed to be non-Gaussian such that its bispectrum is nonvanishing. The noise processes $\{n_1(k)\}$ and $\{n_2(k)\}$ are independent of the signal $\{s(k)\}$, and are such that their (joint) bispectrum vanishes. For instance, the noise processes may be jointly Gaussian. More precisely, conditions (AS1)-(AS3) of [6] are assumed to hold true for model (1)-(2).

The objective is to estimate the delay D given a data record $\{x(k), y(k), 1 \le k \le N\}$.

Consider correlation function $C_{xxy}(i,k) := E\{x(t+i)x(t+k)y(k)\}.$ Denote the cross-bispectrum of input/output (twodimensional discrete Fourier transform of $C_{xxy}(i, k)$ by $B_{xxy}(\omega_1, \omega_2)$. Similarly, let $B_{xxx}(\omega_1, \omega_2)$ denote the bispectrum of the input process $\{x(k)\}\$. We assume that the bispectra of the noise processes are zero and that the noise processes are statistically independent of the $\{u(k)\}$ as well as $\{s(k)\}$. It is also assumed that $B_{sss}(\omega_1, \omega_2) \not\equiv 0$. The cross-spectrum between $\{x^2(k)\}\$ and $\{y(k)\}\$ is given by $S_{x^2y}(\omega)=$ $\sum_{k=-\infty}^{\infty} C_{xxy}(k,k) \exp\{-j(\omega k)\} \text{ leading to } S_{x^2y}(\omega) =$ $H^*(e^{j\omega})S_{x^2x}(\omega)$, where $H(e^{j\omega})=\exp(j\omega D)$ and H^* is the complex conjugate of H. It is easy to show that [4] $S_{x^2x}(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} B_{xxx}(\omega, \omega_2) d\omega_2$; hence, the name integrated bispectrum (polyspectrum) for $S_{x^2x}(\omega)$. The integrated cross-trispectrum (IT) is $S_{\hat{x}^3y}(\omega)$ where $\hat{x}^3(t) = x^3(t) - 3x(t) [E\{x(t)\}]^2$.

3 Time Delay Estimation

It follows from the above development that if $S_{x^2x}(\omega) \neq 0$, then $H^*(e^{j\omega}) = S_{x^2y}(\omega)[S_{x^2x}(\omega)]^{-1}$.

¹This work was supported by the National Science Foundation under Grant MIP-9312559.

Let a consistent estimate $\hat{S}_{x^2y}(n)$ of $S_{x^2y}(\omega)$ be available for $\omega = \omega_n = 2\pi n/N_B$, $1 \le n \le (N_B - 1)/2$; similarly for $S_{x^2y}(n)$. For instance these estimates may be obtained from a record length of N samples by first dividing the record into K (non-overlapping) blocks, each block of length N_B samples, so that $N = N_B K$; compute the appropriate cross-periodograms for each block and then average over the K blocks; details are in [6]. Let $H(e^{j\omega}|d)$ denote the transfer function $H(e^{j\omega})$ with the differential time delay fixed at d. Let D denote the true value of d. Using the polyspectral estimates instead of the true quantities, define

$$\hat{H}(e^{j(\omega_m)}) \doteq \hat{S}_{x^2y}^*(m)[\hat{S}_{x^2x}^*(m)]^{-1}. \tag{3}$$

Using the results of [8, Sec. 7.4, particularly Problem 7.10.8], it follows for large N (such that both N_B and K become large) that the real and the imaginary parts of the estimate $\hat{S}_{x^2y}(m)$ $(m \neq 0)$ are bivariate Gaussian, and $\hat{S}_{x^2y}(m)$ is independent of $\hat{S}_{x^2y}(n)$ $m \neq n$ $(m, n = 1, 2, \dots, \frac{N_B}{2} - 1)$, such that

$$\mathbb{E}\{\hat{S}_{x^2y}(m)\} = S_{x^2y}(\omega_m) + O(N_B^{-1}), \tag{4}$$

$$\operatorname{var}\{\operatorname{Re}\{\hat{S}_{x^{2}y}(m)\}\} = \frac{1}{2K} [S_{x^{2}x^{2}}(\omega_{m})S_{yy}(\omega_{m}) + \operatorname{Re}\{S_{x^{2}y}^{2}(\omega_{m})\}] + O(N^{-1}),$$
 (5)

$$\operatorname{var}\{\operatorname{Im}\{\hat{S}_{x^{2}y}(m)\}\} = \frac{1}{2K} [S_{x^{2}x^{2}}(\omega_{m})S_{yy}(\omega_{m}) - \operatorname{Re}\{S_{x^{2}y}^{2}(\omega_{m})\}] + O(N^{-1}),$$
 (6)

$$cov{Re{ $\hat{S}_{x^2y}(m)$ }, Im{ $\hat{S}_{x^2y}(m)$ }}$$

$$= \frac{1}{2K} Im{S_{x^2y}^2(\omega_m)} + O(N^{-1}). \tag{7}$$

Similar results hold for $\hat{S}_{x^2x}(m)$. Using Cor. 7.4.3 of [8] it also follows that for large N (such that $K \to \infty$ and $N_B \to \infty$),

$$cov\{\hat{S}_{x^2y}(m), \hat{S}_{x^2x}(m)\}$$

$$= \frac{1}{K} S_{x^2x^2}(\omega_m) S_{x^2y}(\omega_m) + O(N^{-1}), \qquad (8)$$

$$\operatorname{cov}\{\hat{S}_{x^2y}(m), \hat{S}_{x^2x}^*(m)\}$$

$$=\frac{1}{K}S_{x^2x}(\omega_m)S_{x^2y}(\omega_m)+O(N^{-1}), \qquad (9)$$

where $\operatorname{cov}\{X,Y\} = E\{XY^*\} - E\{X\}E\{Y^*\}$. For distinct frequencies in $(0,\pi)$, the above covariances are $O(N^{-1})$.

The above results prove useful in establishing Lemma 1 which is a corrected version of [6, Lemma 3]. (The error in [6] lies in ignoring the correlation between the real and the imaginary parts of the cross-spectrum estimates.)

Lemma 1. As $N \to \infty$, the following results are true for any fixed $1 \le m \le \frac{N_B}{2} - 1$ with $\omega_m = 2\pi m/N_B$.

- (A) $\sqrt{K}[\hat{H}(e^{j\omega_m}) H(e^{j\omega_m}|D)]$ converges in distribution to the complex normal distribution $\mathcal{N}_c(0, \sigma_m^2)$ where $\sigma_m^2 = \beta(m)S_{x^2x^2}(\omega_m)S_{yy}(\omega_m)|S_{x^2x}(\omega_m)|^{-2}$, $\beta(m) = 1 + |\alpha_m|^2(S_{x^2x^2}(\omega_m)/S_{yy}(\omega_m)) 2\text{Re}\{\alpha_m(S_{x^2y}(\omega_m)/S_{yy}(\omega_m))\}$ and $\alpha_m = S_{x^2y}^*(\omega_m)/S_{x^2x}^*(\omega_m)$.
- (B) $\hat{H}(e^{j\omega_m})$ and $\hat{H}(e^{j\omega_{m'}})$ are statistically independent for $m \neq m'$.

Sketch of Proof: A perturbation (Taylor series) expansion of $\hat{H}(e^{j(\omega_m)})$ yields (see also proof of Theorem 8.7.1 of [8])

$$\begin{split} \hat{H}^*(e^{j\omega_m}) &= H^*(e^{j\omega_m}|D) \\ &+ S_{x^2x}^{-1}(\omega_m) \left(\hat{S}_{x^2y}(m) - S_{x^2y}(\omega_m) \right) \end{split}$$

$$-H^*(e^{j\omega_m}|D)S_{x^2x}^{-1}(\omega_m)\left(\hat{S}_{x^2x}(m)-S_{x^2x}(\omega_m)\right)+\cdots$$
(10)

Using (5)-(9) we can then establish that for large N, $E\{K[\hat{H}(e^{j\omega_m}) - H(e^{j\omega_m}|D)]^2\} = 0$ and $E\{K[\hat{H}(e^{j\omega_m}) - H(e^{j\omega_m}|D)]^2\} = \sigma_m^2$. Part (A) of the lemma then follows by using results from Sec. 4.2 and Theorem P5.2 of [8]. Part (B) similarly follows from the discussion preceding (4) and [8, Thm. P5.2].

In [6] it was proposed to estimate time delay d by minimizing the cost

$$J_N(d) = \sum_{m=1}^{(N_B/2)-1} \left| \frac{\hat{S}_{x^2y}^*(m)}{\hat{S}_{x^2x}^*(m)} - e^{j\omega_m d} \right|^2 / \hat{\sigma}_m^2 \quad (11)$$

where $\hat{\sigma}_m^2$ is obtained by replacing all the desired quantities in σ_m^2 by their consistent estimates.

4 Performance Analysis

4.1 Transfer Function Matching

The probability density function (PDF) of the asymptotically complex Gaussian vector $\{\hat{H}(e^{j\omega_m}), 1 \leq m \leq (N_B/2) - 1\}$ assuming d to be the true time delay is given by

$$f(\mathbf{H}|d) = \prod_{m=1}^{(N_B/2)-1} \frac{1}{\pi \sigma_m^2} \exp\left[-\frac{\left|\hat{H}(e^{j\omega_m}) - e^{j\omega_m d}\right|^2}{\sigma_m^2/K}\right]. \tag{12}$$

The cost function used in [6] is $-ln(f(\mathbf{H}|d))$ with σ_m^2 replaced with its consistent estimate $\hat{\sigma}_m^2$. The estimate obtained by maximizing $f(\mathbf{H}|d)$ is therefore the (Gaussian) maximum likelihood estimate, hence, it can be shown to be asymptotically efficient with its asymptotic variance equaling the Cramer-Rao (CR)

bound [7]. The variance of the estimator \hat{d}_N of d for large N is therefore given by

$$\operatorname{var}(\hat{d}_{N}) = E\{(\hat{d}_{N} - D)^{2}\}$$

$$= \left| \left[E\left\{ \left[\frac{\partial ln(f(\mathbf{H}|d))}{\partial d} \right]^{2} \right\} \right]^{-1} \right|$$
(13)

where $E\{\hat{d}_N\} = D$. We have

$$\frac{\partial ln(f(\mathbf{H}|d))}{\partial d} = \sum_{m=1}^{(N_B/2)-1} \frac{2K}{\sigma_m^2} \times$$

$$\operatorname{Re}\left\{j\omega_{m}e^{j\omega_{m}d}[\hat{H}^{*}(e^{j\omega_{m}})-e^{-j\omega_{m}d}]\right\}.$$
 (14)

Now exploit Lemma 1 and the properties of complex Gaussian random variables to deduce that

$$E\left\{\left[\frac{\partial ln(f(\mathbf{H}|d))}{\partial d}\right]^2\right\} \ = \ 2N\left[N_B^{-1}\sum_{m=1}^{(N_B/2)-1}\frac{\omega_m^2}{\sigma_m^2}\right]$$

$$\longrightarrow 2N \left[\frac{1}{2\pi} \int_0^{\pi} \frac{\omega^2}{\sigma^2(\omega)} d\omega \right] \text{ as } N_B \to \infty \quad (15)$$

where $\sigma^2(\omega)$ is given by the expression for σ_m^2 (see Lemma 1(A)) with ω_m replaced with ω throughout. In general, one has to calculate the bound (15) numerically.

Minimization of (11) (or maximization of (12)) requires either nonlinear iterative optimization or (as in [6]) computation of a criterion (see Eqn. (22) in [6]) for a continuous range of values of d. In [6] it was proposed to calculate this criterion for a discrete set of values of d via zero-padded FFT calculations (interpolation). In this case the resolution is limited by the amount of zero-padding. An alternative closed-form solution (after mod 2π ambiguity removal discussed in Sec. 4.2) is obtained by phase matching which is discussed next.

4.2 Phase Matching

Define $H(e^{j\omega_m}) = |H(e^{j\omega_m})|e^{j\phi(\omega_m)}$ so that for model (1)-(2), $\phi(\omega_m) = \omega_m D \pmod{2\pi}$. Similarly, set $\hat{H}(e^{j\omega_m}) = |\hat{H}(e^{j\omega_m})|e^{j\hat{\phi}(\omega_m)}$. Therefore, we have

$$\hat{\phi}(\omega_m) = \tan^{-1} \left[\frac{\operatorname{Im} \hat{H}(e^{j\omega_m})}{\operatorname{Re} \hat{H}(e^{j\omega_m})} \right]. \tag{16}$$

The following result is immediate using Lemma 1 and [8, Thm. P5.2].

Lemma 2. As $N \to \infty$, the following results are true for any fixed $1 \le m \le \frac{N_B}{2} - 1$ with $\omega_m = 2\pi m/N_B$.

- (A) $\sqrt{K}[\hat{\phi}(\omega_m) \omega_m D \pmod{2\pi}]$ converges in distribution to the Gaussian distribution $\mathcal{N}(0, \sigma_{\phi m}^2)$ where $\sigma_{\phi m}^2 = 0.5\sigma_m^2 |H(e^{j\omega_m})|^{-2} = 0.5\sigma_m^2$ and σ_m^2 is as defined in Lemma 1.
- (B) $\hat{\phi}(\omega_m)$ and $\hat{\phi}(\omega_{m'})$ are statistically independent for $m \neq m'$.

It is clear that one must get rid of the mod 2π ambiguity before a phase matching approach can be devised. Suppose that we use the approach of [6] to get an estimate \bar{D} of D to within a resolution of 1/L sampling interval (see [6]) where $L=P/N_B$ and P= length of the zero-padded transfer function sequence $\hat{H}(e^{j\omega_m})$. Take L=2 or 4, for instance. Define $\hat{H}'(e^{j\omega_m})=\hat{H}(e^{j\omega_m})e^{-j\omega_m\bar{D}}$ leading to

$$\arg\left(\hat{H}'(e^{j\omega_m})\right) = \hat{\phi}'(\omega_m) = \hat{\phi}(\omega_m) - \omega_m \bar{D}. \quad (17)$$

If \bar{D} is close enough to D, then $\sqrt{K}[\hat{\phi}'(\omega_m) - \omega_m(D-\bar{D})]$ has the same distribution as $\sqrt{K}[\hat{\phi}(\omega_m) - \omega_m D \mod 2\pi]$.

Now we have a linear model with independent complex Gaussian measurement noise e_m :

$$\hat{\phi}'(\omega_m) = \omega_m(D - \bar{D}) + e_m, \quad 1 \le m \le \frac{N_B}{2} - 1.$$
 (18)

The so-called Markov (or best linear unbiased) estimate of D is then given by [10, Sec. 4.3]

$$\hat{d}_{N} = \frac{\sum_{m=1}^{(N_{B}/2)-1} \omega_{m} \hat{\phi}'(\omega_{m}) / \sigma_{\phi m}^{2}}{\sum_{m=1}^{(N_{B}/2)-1} \omega_{m}^{2} / \sigma_{\phi m}^{2}} + \bar{D}$$
 (19)

with the resultant variance [10, Sec. 4.3]

$$\operatorname{var}(\hat{d}_{N}) = \frac{1}{2N \left[N_{B}^{-1} \sum_{m=1}^{(N_{B}/2)-1} \frac{\omega_{m}^{2}}{\sigma_{m}^{2}} \right]}$$

$$\longrightarrow \frac{1}{2N \left[\frac{1}{2\pi} \int_{0}^{\pi} \frac{\omega^{2}}{\sigma^{2}(\omega)} d\omega \right]} \text{ as } N_{B} \to \infty \qquad (20)$$

which is exactly as that in (13) and (15).

5 Simulation Results

The model is given by (1) and (2) with D=5.4. The signal process $\{s(k)\}$ is a zero-mean, i.i.d. one-sided exponentially distributed sequence. Let $\{n(k)\}$ and $\{n'(k)\}$ be two mutually independent, zero-mean, i.i.d. Gaussian sequences each with unit variance. Then we choose

$$n_1(k) = c_1 n(k), (21)$$

$$n_2(k) = c_2[0.9n(k+1) + n'(k)],$$
 (22)

where the constants c_1 and c_2 are chosen to achieve desired SNR's at the two sensors. The sequences $\{n(k)\}$ and $\{n'(k)\}$ are independent of $\{s(k)\}$.

Fig. 1. Performance Bounds

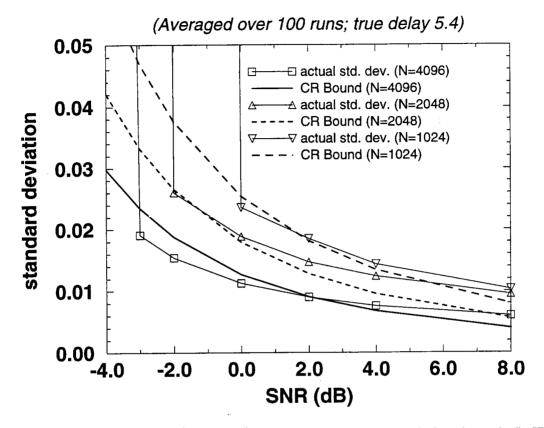


Fig. 1 is based upon 100 Monte Carlo runs. The SNR at the two sensors was kept equal, and was varied from -4dB to +8dB. Experimental standard deviation and the CR bounds are shown in Fig. 1 for three different record lengths. The bounds are based upon (19) (equivalently (15)). The sampled standard deviations are based upon phase-matching. The entire record in each Monte Carlo run was divided into 128 samples long segments with no overlap. It is seen that the performance bounds provide a good indication of the performance above a "threshold" SNR. Below this threshold value of SNR, large estimation errors dominate making the estimate biased and rendering the CR bound useless.

6 References

- [1] C.L. Nikias and R. Pan, "Time delay estimation in unknown Gaussian spatially correlated noise," *IEEE Trans. ASSP*, vol. ASSP-36, pp. 1706-1714, Nov. 1988.
- [2] J.K. Tugnait, "On time delay estimation with unknown spatially correlated Gaussian noise using fourth order cumulants and cross cumulants," *IEEE Trans. Signal Processing*, vol. SP-39, pp. 1258-1267, June 1991.
- [3] J.K. Tugnait, "Time delay estimation with unknown

- spatially correlated Gaussian noise," IEEE Trans. Signal Proc., vol. SP-41, pp. 549-558, Feb. 1993.
- [4] Yisong Ye and J.K. Tugnait, "Noisy input/output system identification using integrated polyspectrum," in Proc. IEEE 1993 Intern. Conf. Acoustics, Speech, Signal Proc., Minneapolis, MN, April 27-30, 1993.
- [5] M.J. Hinich and G.R. Wilson, "Time delay estimation using the cross bispectrum," *IEEE Trans. Signal* Proc., vol. SP-40, pp. 106-113, Jan. 1992.
- [6] Yisong Ye and J.K. Tugnait, "Time Delay Estimation Using Integrated Polyspectrum," in Proc. IEEE 1994 Intern. Conf. Acoustics, Speech, Signal Processing, Adelaide, Australia, pp. II-397-400, April 19-22, 1994.
- [7] H.L. Van Trees, Detection, Estimation, and Modulation Theory, Part I, Wiley: New York, 1968 (Sec. 2.4).
- [8] D.R. Brillinger, Time Series Data Analysis and Theory, New York: Holt, Rinehart and Winston, 1975.
- [9] A.G. Piersol, "Time delay estimation using the phase data," *IEEE Trans. ASSP*, vol. ASSP-29, pp. 471-477, June 1981.
- [10] T. Söderström and P. Stoica, System Identification. Prentice Hall Intern.: London, 1989.