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ABSTRACT

The problem of estimating the difference in arrival
times of a non-Gaussian signal at two spatially sep-
arated sensors is considered. The signal is assumed
to be corrupted by spatially correlated Gaussian (or
¢ class of non-Gaussian) noise of unknown cross-
correlation. We analyze the asymptotic performance
of some recently proposed differential time-delay esii-
mators which ezploit the integrated polyspectrum of the
measurements. The proposed estimaiors are asymp-
totically mazimum-likelihood when attention is con-
fined to the integrated polyspecira of the measure-
ments. Therefore, the performance of the estimators
approaches the Cramer-Rao (CR) bound asymptoti-
cally. Ezpressions for the relevant CR bound are de-
rived. Computer simulations are presented comparing
actual performance with the CR bounds for a simple
ezample.

1 Introduction

The estimation of time delay between received sig-
nals at-two (or more) sensor locations remains an im-
portant task in several fields such as sonar, radar,
biomedicine, and geophysics [1]-[6]. In passive sonar
e.g., the time delay is used to estimate the position
and the velocity of a detected acoustic source.

Various methods have been proposed and imple-
mented over the years for time delay estimation [1]-
[6]. In [6] we presented two new frequency-domain
approaches for differential time-delay estimation us-
ing bispectrum or integrated bispectrum. The objec-
tive of this paper is to analyze the performance of
the estimators of [6]. We also provide some modifica-
tions and corrections to [6]. Compared to the time-
domain approaches of [2] and [3], [6] does not need
the input to be a linear process for consistency to
hold true. Consistency of the time-domain approaches
of [1] remains unproven, in general [2]. Compared to
the bispectrum-based frequency-domain approaches of
[1], our approaches of [6] are asymptotically optimal
in that we also exploit statistics of the bispectrum (or
integrated bispectrum) unlike [1]. Same comments ap-
ply when comparisons are made with [5].

1 This work was supported by the National Science Founda-
tion under Grant MIP-9312559.
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2 Model Assumptions

Let {z(k)} and {y(k)} denote the (discrete time)
measurements at the two sensors. Let {s(k)} denote
the (non-Gaussian) signal and let ni(k) (z = 1,2) be
the additive colored noises at the respective sensors.
Thus we have

2(k) = s(E) +ns(B), (1)
y(k) = s(k+ D)+ na(k), (2)
where D is the differential time delay (or advance) be-
tween the signals at the two sensors. In the above
equations, k is an integer and the delay D is a real
number. It is assumed that all of the processes in-
volved (i.e., z(k), y(k), ni(k), and nz(k)) are zero-
mean and jointly stationary. The signal s(k) is as-
sumed to be non-Gaussian such that its bispectrum
is nonvanishing. The noise processes {n;(k)} and
{na(k)} are independent of the signal {SY‘C)}, and are
such that their (joint) bispectrum vanishes. For in-
stance, the noise processes may be jointly Gaussian.
More precisely, conditions (AS1)-(AS3) of [6] are as-
sumed to hold true for model (1)-(2).

The objective is to estimate the delay D given a
data record {z(k), y(k), 1<k < N}.

Consider the triple correla-
tion function Crzy(3, k) := E{z(t +%)z(t + k)y(k)}.
Denote the cross-bispectrum of input/output (two-
dimensional discrete Fourier transform of Czzy(3, k))
by Bzzy(wi,wsz). Similarly, let Bzgo(wi,w2) denote
the bispectrum of the input process {z(k)}. We as-
sume that the bispectra of the noise processes are
zero and that the noise processes are statistically in-

dependent of the {u(k)} as well as {s(k)}. It is also
assumed that By;s(wi,wz) # 0. The cross-spectrum

between {z?(k)} and {y(k)} is given by S,a,(w) =
Y e oo Cay(k, k)exp{—j(wk)} leading to Syay (w) =
H*(e9%)S;2,(w), where H(e’) = exp(jwD) and H*
is the complex conjugate of H. It is easy to show
that[4] S;a,(w) = %f:’r Bezz(w,wz) dwa; hence, the
name integrated bispectrum (polyspectrum) for
Szaz(w). The integrated cross-trispectrum (IT) is
Szay(w) where 23(t) = z3(t) — 32(t) [E{z(t)})2

3 Time Delay Estimation

It follows from the above development that if
Spaz(w) # 0, then H*(¢¥) = Spay(w)[Spac(w)]™t.
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Let a consistent estimate S;a,(n) of Szay(w) be avail-
able for w = wy,, = 27n/Ng, 1 < n < (N —1)/2; sim-
ilarly for Sza,(n). For instance these estimates may
be obtained from a record length of N samples by first
dividing the record into K (non-overlapping) blocks,
each block of length Ng samples, so that N = NpK;
compute the appropriate cross-periodograms for each
block and then average over the K blocks; details

are in [6]. Let H(e’“|d) denote the transfer function

H(e?“) with the differential time delay fixed at d. Let
D denote the true value of d. Using the polyspectral
estimates instead of the true quantities, define

H(m)) = 8., (m)[85:,(m)) " (3)

Using the results of [8, Sec. 7.4, particularly Prob-
lem 7.10.8], it follows for large N (such that both Np
and K become large) that the real and the imaginary

parts of the estimate Sga,(m) (m # 0) are bivari-
ate Gaussian, and 5’,,:!, (m) is independent of S;a,(n)

m#n (mn=1,2,---, %8 — 1), such that
E{Seay(m)} = Sary(wm) + O(N31), (4)
var{Re{S,3,(m)}} = 5[ Surer(0m)Syy (wm)

+ Re{5%,(wm)}] + O(N7Y), ()
var{Tm{3,ry (m)}} = 52(Ser3(0m) Sy (m)
- Re{Sh,wm} 4O, (8)
cov{Re{5z2, (m)}, Im{5,2, (m)}}
- %Im{s:,y(wm)} +O(NY. (7)

Similar results hold for S;s.(m). Using Cor. 7.4.3 of
[8] it also follows that for large N (such that K — oo
and Np — o0},

cov{gzzy (m), gz’:n(m)}

= %Sz’:n’(wm)sz’y(wm) + O(N_l)) (8)

cov{g',zy (m), S';,z(m)}

1 -
= I—{~ zz,_(wm)S,:y(wm) + O(N 1), (9)
where cov{X,Y} = E{XY"*}—- E{X}E{Y"*}. For dis-
tinct frequencies in (0, ), the above covariances are
O(N~Y).

The above results prove useful in establishing
Lemma 1 which is a corrected version of [6, Lemma
3]. (The error in [6] lies in ignoring the correlation
between the real and the imaginary parts of the cross-
spectrum estimates.)

Lemma 1. As N — oo, the following results are true
for any fixed 1 < m < 42 — 1 with wp, = 27m/Np.

(A) VK[H(e’*™) — H(e/“™|D)] converges in distri-
to h

bution the com-

2

plex normal distribution N;(0, o2,) where o2, =

ﬂ(m)st’s’(“’m)syy(“’M)|5=’=(wm)|_2r B(m) =
1 + |am|2(sz’=’(“’1n)/syy(wm)) -
2Re{om(Sz2y(wm)/Syy(wm))} and am =
S;,y(wm)/S;,z(wm) .

(B) H(e’“~)and H(e’“=') are statistically indepen-
dent for m#£m/. e

Sketch of Proof: A perturbation (Taylor series) ex-

pansion of H (¢/(¥m)) yields (see also proof of Theorem
8.7.1 of [8])

H*(ef“m) = H*(¢“™|D)
+571 (wm) (S‘,,,,(m) - s:,y(w,,,))

— B (& |D)S 7L (wm) (8a2a(m) — Seaa(wm)) + -+

(10)
Using (5)-(3) we can then establish that for
large N, E{K[H(e’“m) — H(e’“~|D)]*} = 0 and
E{K|H(e’“m) — H(e’“~|D)|*} = o2. Part (A) of
the lemma then follows by using results from Sec. 4.2

and Theorem P5.2 of [8]. Part (B) similarly follows
from the discussion preceding (4) and [8, Thm. P5.2].
a

In [6] it was proposed to estimate time delay d by
minimizing the cost

(N2/2)-1} gx_ (m) ' 2
In(d) = =4 — et f5h (11)
ng—_:l S;’:n(m)

where 62, is obtained by replacing all the desired quan-
tities in o2, by their consistent estimates.

4 Performance Analysis

4.1 Transfer Function Matching

The probability density function (PDF) of the
asymptotically complex Gaussian vector

{H(el“m), 1< m < (Ng/2)— 1} assuming d to be
the true time delay is given by

" . 2
(Ns/2)-1 H(ejw,,.) _ eyw,,.,d

(12)
The cost function used in [6] is —In(f(H|d)) with o2,
replaced with its consistent estimate 62,. The esti-
mate obtained by maximizing f(H|d) is therefore the
(Gaussian) maximum likelihood estimate, hence, it
can be shown to be asymptotically efficient with its
asymptotic variance equaling the Cramer-Rao (CR)
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bound [7]. The variance of the estimator dy of d for
large N is therefore given by

var(dy) = E{(dy - D)*}

(g

d=

where E{dy} = D. We have

on(f(itid)) _ Y2k
ad - —~ o
Re {jumelomd[H* (¢94=) — e} (19)

Now exploit Lemma 1 and the properties of complex
Gaussian random variables to deduce that

, Ns/3)-1 4
E{[Ma(fld_)z] } = zN[NE‘ 2 %}

m=1 m

- 2N[%/T-U—:€3dw} as Np - oo (15)

where o%(w) is given by the expression for o2 (see
Lemma 1(A) ) with w,, replaced with w throughout.
In general, one has to calculate the bound (15) numer-
ically.

Minimization of (11) (or maximization of (12) ) re-
quires either nonlinear iterative optimization or (a.s n
[6]) computation of a criterion (see Eqn. (22) in [6])
for a continuous range of values of d. In [6] it was
proposed to calculate this criterion for a discrete set
of values of d via zero-padded FFT calculations (inter-
polation). In this case the resolution is limited by the
amount of zero-padding. An alternative closed-form
solution (after mod 27 ambiguity removal discussed
in Sec. 4.2) is obtained by phase matching which is
discussed next.

4.2 Phase Matching

Define H(el“m) = |H(e"""‘ le?#(@m) so that for
model (1)-(2), ¢(wm) = wmD(mod 27). Similarly,
set H(e’“m) = |H(ei“m)|ei$(wm). Therefore, we have

ImH(ef9)

5 Wen =tan™?! —
#lom) ReH(eiwm)

(16)

The following result is irnmediate using Lemma 1 and
{8, Thm. P5.2].

Lemma 2. As N — oo, the following results are true
for any fixed 1 <m < Ef- — 1 with wy, = 27m/Np.

(A) VE[$(wm)—wmD (mod 27)] converges in distri-
bution to the Gaussian distribution A(0,0%.)
where o3 = 0.50% |H(e’“™)|? = 0.503, and

o2, is as defined in Lemma 1.

(B) ¢(wm) and ¢(wm:) are statistically independent
form#m/. o
It is clear that one must get rid of the mod 27

ambiguity before a phase matching approach can be
devised. Suppose that we use the approach of [6] to

get an estimate D of D to within a resolution of 1/L
sampling interval (see [6]) where L = P/Np and P =
length of the zero-padded transfer function sequence
H(e’“™). Take L = 2 or 4, for instance. Define

H'(e?“m) = H(e?m)e~i¥mD leading to
arg (ﬁ'(é““)) =
If D is close enough to D, then VE[¢'(wm) —

wm(D— D)] has the same distribution as vE[¢(wm)—
mod 27).

‘zl(wm) == $(wm) - me. (17)

Now we have a linear model with independent com-
plex Gaussian measurement noise e, :

¢ (wm) = wm(D—D)+em, 1<m< %E—l. (18)

The so-called Markov (or best linear unbiased) esti-
mate of D is then given by [10, Sec. 4.3]

43'(“’7n)/0§m
(Wa/2)-1
P w3 /a’im

E(N5/2) 1

dy = + D (19)
with the resultant variance [10, Sec. 4.3]

1
[ Z(Ns/z) 1 u=

var(dy) =

_— [ f(;” a;’(z ] as Ng — 0 (20)

which is exactly as that in (13) and (15).

5 Simulation Results

The model is given by (1) and (2) with D=5.4. The
signal process {s(k)} is a zero-mean, i.i.d. one-sided
exponentially distributed sequence. Let {n(k)} and
{n'(k)} be two mutually independent, zero-mean, i.i.d.
Gaussian sequences each with unit variance. Then we

choose
ni(k) = cin(k), (21)
na(k) = c2[0.9n(k +1) + n'(k)], (22)

where the constants c; and c; are chosen to achieve de-
sired SNR'’s at the two sensors. The sequences {n(k)}
and {n/(k)} are independent of {s(k)}.
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Fig. 1. Performance Bounds

(Averaged over 100 runs; true delay 5.4)
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Fig. 1 is based upon 100 Monte Carlo runs. The
SNR at the two sensors was kept equal, and was var-
ied from —4dB to +8dB. Experimental standard de-
viation and the CR bounds are shown in Fig. 1 for
three different record lengths. The bounds are based
upon (19) (equivalently (152‘). The sampled standard
deviations are based upon phase-matching. The entire
record in each Monte Carlo run was divided into 128
samples long segments with no overlap. It is seen that
the performance bounds provide a good indication of
the performance above a “threshold” SNR. Below this
threshold value of SNR, large estimation errors dom-
inate making the estimate biased and rendering the
CR bound useless.
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