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ABSTRACT

We address the problem of multipath time-delay esti-
mation. When the received data is very long compared
to the transmitted signal, the data is expected to con-
sist of a large number of paths. Modeling the entire
data becomes computationally expensive. We propose
a technique to break the data into short segments and
model each segment individually without misfitting or
truncating any paths at the ends of any segment. By
effectively using overlapping segments, the estimates
of time-delays are combined to model the entire data
record. The method is extended to the case where only
basebanded data are available. The proposed technique
is demonstrated on an experimental sea-test data.

1. INTRODUCTION

In multipath time-delay estimation, the waveform r(t)
received at a single sensor is modeled as delayed and
attenuated replicas of the transmitted signal. This is
the result of multiple reflections and attenuation of the
signal in the channel. The signal r(t) could also be
a beamformed combination of signals received at an
array of sensors. It is described mathematically as

M
r(t) = Zaks(t —m)+w(t) , 0<t<T (1)
k=1

where s(t) is the transmitted signal (pulse), a; the am-
plitude (attenuation value) for path k, 7 the time-
delay for path k, M the number of different paths and
w(t) the white Gaussian noise corrupting the received
signal. We assume that s(t) and M are known and all
signals are real-valued. The problem is to estimate the
unknown parameters ay and 7 from the samples of the
received signal.
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In practice, if signals are band pass, their base-
banded versions are stored instead of the original sig-
nals. Hence only the samples of the basebanded signals
are available to estimate the time-delays. Let &(¢) de-
note the Hilbert transform of z(t), and z°(t) (= z(t) +
jZ(t)) denote the analytic signal of the real-valued sig-
nal z(t). Let zpp(t) denote the baseband version of
z(t). It is defined as zpp(t) = 1z°(t)exp(—jw.t),
where w, = 27 f, is the center frequency in radians/sec.
The baseband version of y(t) = z(t — 7) is ypa(t) =
1y°(t) exp(—jwct) = zpp(t — 7)exp(—jwr). So the
baseband version of the multipath signal (1) is

M

rpa(t) = Y Aespp(t —7) +wpp(t) (2
k=1

where Ay = ap exp(—jw,7). The amplitudes in the
propagation model are real-valued since the signals r(t)
and s(t) are real-valued. Accurate estimates are ob-
tained by imposing real-amplitude constraints. In the
original model (1) it amounts to constraining the ax’s
to be real-valued whereas in the baseband model (2) it
amounts to constraining the A’s to be complex-valued
with a phase angle of —w,7; radians.

Since the noise is white Gaussian, the maximum-
likelihood estimates {(MLE) and the Least-Squares (LS)
estimates of ax’s and 7;’s are the same. The LS esti-
mates of the time-delays can be obtained by minimizing
the M-dimensional LS error function. But when the
observation interval [0,T] is very large and contains a
large number of paths, minimizing the M-dimensional
LS error function is not feasible as it would require an
enormous amount of computation.

We propose a technique of modeling the data in
short segments without misfitting or truncating any
paths at the ends of any segment. The estimates of
time-delays from all the segments are then combined to
model the entire data record. The technique is demon-
strated on an experimental sea-test basebanded data.
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2. MODELING OF SHORT DATA
SEGMENTS

Long data records may consist of too many paths. This
would make modeling the entire data computationally
expensive. It is more economical to break the data into
short segments and then model each segment individ-
ually. Further, while selecting a segment of data, some
paths could get truncated at the ends of the segment.
So, to model a segment of data and also to account for
the truncated paths, time domain weighting is intro-
duced in the original Least-Squares (LS) error function
as follows:

2

°c M
Bar) = [ POF0-Yast-m| & @
- / o)) — 3 arg(s(t — )| dt (4)

e k=1

where g(t) is a non-negative window function which is
non-zero only in the selected time interval ¢; <t < to.
One could think of this as replacing the data r(t) and
each of the hypothesized path s(t — 1) by g(¢)r(t) and
g(t)s(t — i), respectively. Expressing the best ampli-
tudes in terms of the delays, we get an error function
which is a function of the delays alone (E(7)). The
CRALS algorithm developed in [1] is used to determine
the global minimum of the LS error function. Some ill-
conditioning problem encountered in LS modeling is
addressed in [2].

Suppose T, is the duration of the transmitted pulse
s(t). A path at ¢t; — T, would touch the beginning of
the interval [t;, t2] and a path at t2 would touch the end
of the interval [t1,%2]. By minimizing the error func-
tion in (4), all time-delays in the interval [t; — T, t2]
are considered. In this manner, all paths which partly
or eompletely lie in the selected interval of [t;, ;] are
accounted. The CRALS algorithm is applied by using
the selected segment of data g(t)r(t), and by window-
ing each hypothesized path s(¢ — 7x) by g(t) whenever
the LS function and its Jacobian needs to be computed.

In applications such as radar, sonar, and geophysics,
only band pass signals are used as they are capable of
traveling long distance. Techniques like the Alternat-
ing Projection (AP) [3] and Estimate Maximize (EM)
algorithms [4], when applied on the LS error function,
would involve a sequence of one-dimensional searches
of an oscillatory function. Hence they are likely to
converge to local minima for closely-spaced paths. In
contrast, the CRALS algorithm starts from the enve-
lope of the error function and makes a transition to
the actual error function. The CRALS imposes the

real-amplitude constraint since the amplitudes in the
propagation model are real-valued.

3. MODELING OF LONG DATA RECORD

The schematic diagram in Figure 1 shows the window
function g(¢) and the time interval of one particular
segment. It can be seen that paths with time-delays in
the interval [t; — Ty, t1] would overlap in the selected
interval of [t,to]. Similarly, paths with time-delays in
the interval [t; — Ty, t2] would overlap in the selected
interval. Estimates of paths which only partly lie in
the selected interval are not as accurate as those of
the paths which completely lie in the selected interval.
Hence we do not keep the estimates from the “unreli-
able regions”, [t; — T, t1] and [tz — Ty, t2}, indicated by
shaded regions in Figure 1. The next segment is chosen
such that it overlaps with the previous one and it covers
[ta — T, to] reliably. That is, the new t; =ty — T,
While modeling the data in the interval [t;,t3] it
is convenient to consider t; — T;, as the new time ori-
gin. However caution must be exercised in imposing
the real-amplitude constraint on the baseband model.
Suppose tg is the new time origin. The new variables
for time and delay are t' = t — to and 7, = 7% — to,
respectively. Substituting these variables in (2), we get

M

ZA;CSBB(t’ - T,'c)

k=1
+ exp(jwcto)wsr(t) (5)

exp(jweto)rBB(t + t0)

where A}, = ag exp(—jw.;). By multiplying the data
with the the complex scale factor of exp(jwcto), the
real-amplitude constraint can be imposed in a similar
manner as in (2). For the selected interval [t;,%s], the
new time origin is chosen as tg = t; — Ty,

4. EXAMPLE WITH BASEBANDED
EXPERIMENTAL DATA

The experimental sea-test data used here was provided
by the Naval Undersea Warfare Center (NUWC) in
Newport, RI. The original received (real-valued) signal
r(t) is a narrow band signal with a center frequency of
about f, = 21.7 kHz. It is sampled at 80 kHz. Instead
of storing the samples of the original r(t), its base-
banded version rgp(t) is resampled at a much lower
rate and stored. The original modulated signal is mul-
tiplied by exp(—j2x f.), to shift the signal in frequency
to the baseband level. It is then decimated by a factor
of 16 by low pass filtering and resampling at a lower rate
of 80/16 = 5 kHz. The basebanded signal is complex-
valued in general. Figure 3(a) shows the magnitude of
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spp(t). Figure 3(b) shows the magnitude of rgg(t) in
solid line. The transmitted signal is also basebanded
by the same procedure. The sampling interval of the
basebanded signals is 167, where T, is the original
sampling interval.

The receiver is a 2-dimensional (2-D) array consist-
ing of 52 sensors. A 2-D beamformed signal looking
at a particular direction is used in this example as
the received signal. The basebanded received signal
rep(t) is 2048 samples long while spp(t) is only 13
samples long. For sake of illustration, the data is mod-
eled over three overlapping segments. The first seg-
ment is [200 x 16T, 254 x 16T,]. The windowed rpp(t)
is zero-padded in the beginning by T, /16T, = 13 and
its DFT is used in the CRALS algorithm [5]. This is
equivalent to using original band pass signals. The seg-
ment is fitted with 10 paths. The delays in the interval
[241, 254] samples are replaced by those from second
segment, which is chosen as [141,295]. Again the de-
lays in the unreliable region are replaced by those from
the third segment, which is chosen as [282,336]). The
signal is reconstructed from the estimated amplitudes
and time-delays. Figure 3(b) shows the magnitude of
the reconstructed signal in dotted line and Figure 3(c)
shows the magnitude of the residue after fitting with
19 paths. A plot of the amplitudes and time-delays is
shown in Figure 2.
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Figure 1: Schematic diagram to show the window func-

tion g(t) and the transmitted pulse s(t) on one partic-
ular segment. The next segment is partially shown.
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Figure 2: Stem plot of the estimated time-delays and (b):  Time (in 16T%)

amplitudes in the (a) first segment; (b) second segment; Figure 3: Magnitude of basebanded (a) transmitted

(c) third segment; (d) all the three segments combined. signal spB(t), (b) received (solid line) and recon-
The regions shown within vertical dotted lines are the structed signal (dotted line), and (c) residue.
“unreliable regions.”
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