PASSIVE TARGET MOTION ANALYSIS USING MULTIPATH DIFFERENTIAL
TIME-DELAY AND DIFFERENTIAL DOPPLER SHIFTS

P. BLANC-BENON aND G. BIENVENU
Thomson-Sintra ASM, BP.57, 06903 Sophia-Antipolis Cedex, France

ABSTRACT

Target Motion Analysis (TMA) is a basic function in pas-
sive SONAR, generally using bearings only or bearings and
frequency measurements. But due to the arrays whose aper-
ture are practically negligeable considering the target range,
and even if the platform moves itself to yield a "synthetic
array”, the classical TMA methods take a few ten minutes
to give an acceptable solution. Hence, this paper presents
an enhanced TMA estimator using jointly the bearings and
multipath parameters: the differential time-delays and their
doppler shifts. The Cramer-Rao lower bounds are studied
for two cases of sound propagation: a constant celerity pro-
file and a bilinear one. They both exhibit advantages in
terms of a shorter time to get a given precision on the tar-
get parameters: its range, depth, and speed vector.

1. INTRODUCTION

Passively locating an acoustic source (the target) which
radiates a broadband noise with eventually stable lines is
known to be a difficult task specially for actual at-sea sit-
uations. The basics of bearings-only TMA has been ad-
dressed in a major publication from Nardone et al. [1] in
1984, stating both the problem of target observability and
the Cramer-Rao bounds, and establishing a class of efficient
batch non-linear estimators (in comparison with extended
Kalman filters). The attempt to increase the global TMA
performance leads to either the optimization of the platform
maneuvers {2] or the addition of new measurements as fre-
quency lines [3], or even to the addition of other platforms
[4], [5]. However, specific applications require a quicker
identification of the target with a single antenna: the use
of the multipath is an answer [6], [7], [8].

In Sec. 2, we introduce the measurement equations for
the bearings and for the differential time-delays and their
doppler shifts. Sec. 3 states the problem of estimating the
3-dimensional target position and speed via the measure-
ments collected at sample times. Cramer-Rao bounds are
established for both a constant sound speed profile (SSP)
and a bilinear SSP. Sec. 4 gives results and compare the
contribution of the differential doppler shifts during time.

2. PROBLEM STATEMENT

Given a 3-axis coordinate system, we simply recall the pri-
mary model and measurement equations used in TMA from
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bearings at least. The passive array is built to deliver bear-
ings relatively to the platform (via eg. classical beamform-
ing). Knowing its exact position at each time t, the true
bearing measurement equation states as

— arc z(t) —zr(t)
pex) = wan (SZG) o
Bn(® = BLX)+n(t) , )

where (z,y) and (zp,yp) respectively are the target and
platform horizontal positions, n the zero-mean Gaussian
process noise with known covariance Ug; X designating the
complete unknown state vector relatively to the target for
a reference time ¢*

X = [o(t*),¥(t"), 2,9, 2] (3)

Due to the non-observability of the situation (even estimat-
ing only (z,y) from a single bearing), the target is assumed
to move along a horizontal straight line with a constant
speed. This weak hypothesis explicits the form of the state
vector X which becomes now observable (excepted z) from
a bearing time history, provided the platform maneuvers
sufficiently (ie. in a non ambiguous way) [9]. Nevertheless
one easily admits that a minimum few minutes is neces-
sary to satisfy such requirements. And that explains the
resort to additive measurements such as multipath. Let
us introduce the model equations for the differential multi-
path time-delays and their doppler shifts. Denoting by T
the time-delay for an eigenray path to go exactly from the
source to the platform and by 7 the differential time-delay
between such two paths say i and j, we have for a constant

SSP (¢(z) = o)

T4,X) = %\/Rz_fz_?- , (4)
rt,X) = Tit,Rz)—Tst,R,2) , )

where R = \/(z — zp)? + (y — yp)? is the horizontal range
between the target and the platform, and Z the differential
depth between the source and the acoustical image of the
platform according to the actual number of surface and/or
bottom reflections. Furthermore, in the constant SSP case
this differential depth is easily expandable using a few pa-
rameters (¢,np,ns) characterizing each ray

Z =2enpzp + (—1)"8+"SZP -z, (6)
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with zp and zp being the bottom and platform depths, ¢
= 41 (resp. -1) if the ray goes down (resp. up) starting
from the source, np (resp. ns) being the number of bottom
(resp. surface) reflections.

For a bilinear SSP, when the propagation is no longer rec-
tilinear, the eigenrays time-delays are much more compli-
cated [10] but can be expressed in terms of the target depth
z and the elevation angle 8 at the source

T = H@,2), (7
6 = G_l(R’z) ' (8)

the detailed expressions for the function G and H are given
in appendix, being understood that a set of parameters
omitted here (see appendix) enables to distinguish specific
functions G and H for each existing eigenray. In the same
manner, the differential doppler shift attached to one pre-
ceeding T measurement is

it X) _ 3T;(¢, X)

+(tlx) = ot - 5t ’ (9)
where T'= % is
. 1 RR
Tt X) = —c;\/E_QT——Z—,‘f ) (10)

omitting t dependance in the right part of the equation for
the sake of simplicity, and with RR = (z — zp)(£ ~ zp) +
(y—yr)(®—9pP), R being the relative horizontal range rate.
Finally considering additive noise processes { and &, the
measurement equations are

™(t) = 7@ X)+L0), (11)
’fm(t) = ‘i'(trX)'l"E(t)s (12)

¢ and £ are independant [11] with known covariances o2

and o2. These time-delays and doppler shifts measurements
result from an autocorrelation of the signal at the beam
output in the target direction .

3. TARGET PARAMETERS ESTIMATION IN
THE PRESENCE OF MULTIPATH

As being introduced before, a collected batch of measure-
ments {Bm (t), Tm(t), Fm(t);t =11,...,tn} serves as a 3N x1
vector of observations M,, in the maximum likelihood esti-
mation (MLE) of the 5 x 1 state vector X. In fact assuming
the Gaussian nature of noise, the MLE X reduces to a non-
linear least squares estimate by classically considering the
log-likelihood of the measurements

X = argmin Q(X) , (13)

where Q(X) is the following quadratic criterion
QX) = |IMm—MX)IE , (14)

¥ denoting the diagonal covariance matrix of the measure-
ment vector, made of the og(t;), o-(t:), and o+(t:), and

M(X) the noiseless observation vector. Rather than pro-
ducing detailed explanations about X which can be easily
computed from usual optimization routines, it is worth to
discuss much about the Cramer-Rao lower bound (CRLB)
connected to this estimation problem.

Recalling the definition of the Fisher information matrix
(FIM), one have

(15)

oMt _, oMt
X © B3X

CRLB(X) = [ 122

So the CRLB computation consists mainly in expliciting
the various first order partial derivatives of the observation
vector versus the 5 unknown state vector components, in
order to elaborate the Jacobian matrix %’;{.

3.1. The constant SSP case

Considering the definition of the CRLB, we give the follow-
ing expresions for the first order partial derivatives which
compose the Jacobian matrix, ie. relatively to z, y, £, ¥
and z taken at each sample time, with D = vR2 + 22 des-
ignating the actual distance between the source and the
platform

B F=-F& F=0 9

=i g =—t& (17

8 = %=l 5 = éy[m; S=alzp7y (9
E=t% F=tg 19

g—z =% [zD7 - zRRD"a] (20)

8 = L[y~ - yRRD™]} 5t = BR[ZD™; (21

8 ot 8 13
S =tE+ 2D F=tF+LID7; (22
Notice that [u]} stands for u; —u;, and also that we use ¢, z,
v, &, ¥ instead of t —t*, z —zp, £ — £p, §y — Yp respectively
for simplicity in the right part of the previous equations.

3.2. The bilinear SSP case

Here the computation of the CRLB turns out to be feasible,
even if the time-delay is an implicit function of the unknown
X: it does not require any numerical inversion since only the
function G occurs (and not the inverse G~!). Furthermore
software enables to safely calculate the following expressions
in a symbolic way [12]. As for the constant SSP we can
explicit now the first order partial derivatives for the time-
delays and the doppler shifts, with the same conventions as
taken previously (the bearings derivatives being unchanged)

= }[HoG3'l; (28)

3z
L=[m-mG] G-k G-t 09
zR Hsa HpGoe v, L Hel'
- |-t e e 09
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or yR,Heoe HoGoo z,, .\ Hp
& HeoG. R RH, GesG.\]*
az - [(Ha, - GO Ga - Gg (Go, - 09 )}J (27)

$ =55+ [HoG'l; &5 =13 + $[HoG']; (28)

where the symbols A,, and A, denote respectively the first
order partial derivative of the function A versus u and the
second order partial derivative versus u and v.

4. RESULTS

The contribution of the differential doppler shifts has been
analyzed on a short duration for a 40 knots, 60 m depth
target going South and firstly detected in the azimuth 45
deg for 5 km. The platform is moving at 5 knots on course
300 deg, at 120 m depth. The sample time is 8 sec, with
og = 0.1 deg, 0 = 0.5 10™* sec, and 04 = 2.2 1075, Two
cases are studied: a constant SSP (1500 m/s) and a bi-
linear SSP (g1 = —0.5 and ga = 0.0174 ms~!/m). Three
eigenrays are considered: the direct path (D), the bottom
reflected path (B), and the doubly bottom single surface re-
flected path (BSB). These rays constitute two time-delays
denoted D/B and D/BSB. Figs. 1 to 4 present the 1-sigma
CRLB with doppler shifts and Figs. 5 to 8 the CRLB ra-
tios (without/with doppler shifts) for the four interesting
components during time starting from 8 sec up to 64 sec:
the target depth relatively to the bottom depth (z5 = 2400
m), the relative range, the course and the relative speed.
The improvement naturally appears on the very beginning
of the TMA (being infinite for a single time) and identically
for both SSP’s. Even when the performance is poor on the
location parameters, the CRB for the target course is suf-
ficient enough to determine whether it comes towards the
ownship or not.

5. CONCLUSION

This paper has contributed firstly to establish the Cramer-
Rao bounds for TMA using jointly bearings, multipath dif-
ferential time-delays and their doppler shifts, showing here
the improvement due to the doppler shifts specially for short
scenarios and fast targets, and secondly to introduce a bi-
linear sound speed profile into such computation without
using ray-tracing programs.
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APPENDIX: EIGENRAYS IN A BILINEAR SSP

We detail the analytical computation of the two functions G
and H introduced in Sec. 3.2, the following equations and
notations being largely borrowed from [10]. Denoting by
¢, cp, c1, C2, ca the sound speed respectively at the source
depth z, the platform depth zp, the sea surface depth 2z,
the minimum of celerity depth 22, and at the bottom depth
za (assuming ¢, > c3 > ¢z, otherwise exchange the bottom

and the surface, and z positive downwards), and by g1, g2
the algebraic gradients of celerity in the surface layer and in
the deep layer, one recalls the expressions obtained in [10]
for the eigenrays

secf 1 . .
R= 2ep {Z;[(—l — a)siné — 2v(2L — v + 8)sin 4,

+(1 + B)sinbp] — 5:—2[(1 — a)sind + (8 — 1)sindp

1 1
—4ul sind — - —)4L -2 in @ 29
pLsnGs] + (- = —)AL ~2+0)sinda}, (29)

where R is the horizontal range between the source (emit-
ter) and the array (receiver), and 8,8p,6,,85, 80 the eleva-
tion angles of the eigenray respectively at the source, at the
observer, and when intersecting the surface, the minimum
of speed and the bottom interfaces. These elevation angles
(positive downwards) can be expressed in function of 8 and
of the SSP (from Snell’s law)

2
singp = 62 (i) ~1+sin?6, (30)
c cp

. Ci c\?2 s 2 .
sm&.-:; (Z) —14sin“f, fori=1,2,3 . (31)

The other parameters, which control the type of eigen-
ray, are now explained for the SOFAR rays, the surface-
reflected-bottom-reflected rays (SRBR), the refracted-
bottom-reflected rays (RBR), and the refracted-surface-
reflected rays (RSR)

a= T 122 z,8=t1ifzp 2 2z, (32
Y= Sign(g), 6= sign(Bp), (33)
oc=la+v+[B-6l-|v+6], (34)

(#,v)sorar = (0,0), (u,v)rBr=1(1,0), (35)

(s, v)rsr = (0,1), (u,V)srer = (1,1), (36)

where L is the number of bottom reflections or bottom
turning points (refractions). The right part of (29) con-
stitutes the function G as used in the main sections (Eq.
8). The second important function which characterizes the
eigenrays is the propagation travel time (the companion
function H in (7)) as

T= g—ll In [9(0) 5 w(6p) F* w(0) 2L+
-% In [\If(o)‘—igq:(ap)i?qu(oa)‘z“L]
+(gi1 - giz)ln [T(6)F 1% | (37)
where ¥(z) < tan(% + I).
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Fig.3 CRLB (course) .vs. time (sec)
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