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Abstract
This paper proposes a robust detection statistic for signals

whose parameters are uncertain. Standard detection schemes
generally use time domain correlation which can be related to
correlation based on the Wigner-Ville distribution by Moyal’s
identity. This paper shows that a more robust detection
statistic is achieved by using generalised patterns in time-
frequency space and deriving a non-linear time domain
correlation.

The performance of the robust detection statistic is
evaluated with the aid of receiver operating curves, two robust
detection examples are given.

1.0 Introduction.

The signal processing requirement concerned within this
paper is the robust detection of signals. With traditional
detection scheme all the information about the process is
assumed to be known, ie. both the deterministic and random
natures of the process. Usually, detection schemes optimise
the detection probability or the signal to noise ratio output
with the result being the well known matched filter.

It is well known that the performance of the matched filter
degrades dramatically when the signal deviates from the
proposed model.

In reality, one does not always know the exact
information about the process and so the detection algorithm
must be able to give reasonable results under conditions that
cause the signal to deviate away from the ideal conditions. In
essence the detection algorithm needs to be inherently
insensitive to signal model perturbations.

1.1 Signal space localisation.

It is well known characterisation of a non-stationary
signal is possible by using a distribution that localises one of
the signal’s parameters, such as its energy, in both time and
frequency. Probably the most well known of these
representations is the short time Fourier transform which as
been used widely in the analysis of speech.

Recognition and detection of a signal have been used in
the past by time-frequency representations (TFRs) due to their
ability to illustrate important information about the signal.
The notion of robust time-frequency filtering enters naturally
into detection applications because it is possible to generalise
the signal space features. It has been shown that formulation of
correlation type receivers is obtainable from TFRs due to
Moyal’s identity- a relationship between time-frequency
correlations and time domain correlations.

A major problem associated with time-frequency
correlation is that the dimensionality is increased by a factor
of two in moving to the time-frequency space from the time
domain. The two dimensional correlation that forms the basis
of classification using TFDs are inherently computationally
expensive, and limits real time capabilities.
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This paper shows how the reduction of the computation
load for time-frequency based correlation can be achieved by
making use of eigenvalue decomposition.

2.0 Problem definition.
Consider a measurable signal which has finite energy with
its inner product given by,

+oo
<x,y> =J x(t) y*(t) dt. (h)

-00

and for any signals which are elements of Ly(R) Schwartz's
inequality holds
l<x,y>t < HIxll lyH. 2)

Both (1 & 2) form the basis of time domain matched
filtering, and can be used to classify a measured signal from
one of the specified nominal functions yj --- YN, The decision
rule in such a traditional classification procedure is to choose
the signal which maximises the output of (1).

It can be shown that the inner product of the Wigner-Ville
distribution (WVD) of the measured signal y(t) with the WVD
of a known signal x(t) is related to the inner product defined in
(1) (1], and so

Wx(t,f) Wy(t,f)dt df = I<x,y>I2 3)
R2
where by definition, the WVD is
400
Wx(tf) = f x(t + 21) x*(t- %) e-i27ft dt. (4)

Using Moyal’s identity the WVD can form the basis of a
correlation classifier. To find the correlation of a signal based
on the WVD it is necessary that the WVD of the signal under
analysis be calculated.

Since by Moyal’s identity, the two formulations for the
correlation statistic are equal then one might asked the
question- “why use time-frequency distributions at all to
formulate the correlation statistic?”” Replacement of the WVD
by a more general form of time-frequency pattern function
provides the answer to this question. This allows much greater
flexibility in the classification process, as representation of a
broader class is possible. The correlation statistic can now be
redefined as,

nj(x) = <Wx,\yj>, j=1,...,N. (5)

The computational complexity for such a correlation
statistic is of order O(TzlogT) + O(T2), where T denotes the
length of the signal. This is in contrast to the computation
complexity for the one dimensional case that has order O(T).

As seen from these orders of complexity it would be
advantageous if there were a reduction of the time-frequency
processing requirements to one dimensional format, or a series
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of one dimensional operations so real time processing could be
realisable.

3. 0 Theory of filter design based on time-
frequency pattern function.
Generally, the windowing function \vj(t,f) has Hermitian

symmetry so that the bilinear time-frequency representation is
real. The derivation that follows shows one can obtain a
significant reduction in the computational complexity using
eigenvalue decomposition of the time-frequency pattern
function kernel. Truncation of this expansion allows the
reduction in computational complexity since typical pattern
classification functions will be of low effective rank. The
kernel function is defined as

KQ(tl ty)= f \vj(tl;tz f) einf(ty-t3) df. (6)

Rearranging and then substituting (4) into (5) yields,

njE =] xe+Drre- D edmiftdy; @h) dedf (Ta)
R3 2 2 J
=] x(t]x*(ty) Kyi(ty ty) dtydt (7b)
Lz Dx7(12) Kg(tyotp) dydty
= <x,ij>. (7¢c)

where Qj denotes a mapping from La(R) — La(R) and is
defined by,

iX) = (t,T) x(T) dr. 8
Qo JRKQJ( ) X(1) 3
The correlation statistic then has the expansion of the form
= £ ADx P>, ©)
n=0

Where IX(’)IZQ.U)lZ... are the eigenvalues of Qj, and

(l)e I./Z(IR) are the associated orthonormal eigenfunctions.
Equatxon (9) follows since KQj is Hermitian and admits the

expansion [2]-[4]

Kqjtytp) = Z XO)CO)(tl)CO) (tp) (10)

converging in Lz(lkz) The compact Fredholm operator
generated by the kernel KQ is defined by

QX = z 2ex,tD0>t0w). (11)

The correlation statistic now has the form defined by (12)

QXD = >: Aex et Pry. (12)
For many pract1ca1 appllcatlons the pattern eigenvalues

7&.[(1]) will decrease rapidly in magnitude as n—ee. Reduction of

the computation required to obtain the correlation statistic is
possible by taking into consideration only those eigenvalues

that are dominant. The correlation statistic for the truncated set
of eigenvalues is defined by

(L)(x) _% l(])l<x g2, (13)
n=0
The error in using the reduced order filter instead of the true
correlation statistic is given by

;- njfL)l <ixi2[ 3 a2z, (14)

n=L
This bound can be obtained by subtracting the kernel function
defined by (10) from the true kernel function expansion.

L-1 3y )%
kgt = £ as
n=

where L denotes the lower rank approximation to KQj then

IKg; - K(L)II2 _ 3 . (16)
n=L
Since the error between the true and reduced correlation statistic
is given as

m j-nJ(L)l = l<x,Qjx> - <x,Q§L)X> (172)

< IKI2AQ; - QEL)II (17b)
Note from (17b) that the error bound is only dependent on the
norm of x. Consequently, the time-frequency correlator can be
approximated by a bank of one dimensional correlators.

Although the eigenfunction sequences must be stored to
obtain the correlation statistic and for large data lengths this
may become cumbersome. State space realisation of the filters
can be achieved which reduce the storage requirements.

4.0 Derivation of analytic receiver operating
curves. '

To obtain some performance indicators for the proposed
correlation statistic, analytic performance equations are
derived. The probability of detection and false alarm
completely characterises the performance of the robust
detection algorithm, and are used to form analytic receive
operating curves.

Before deriving the required probability density function
for the non-linear detection statistic some preliminary
assumptions are made about the processes involved. It is
assumed that all possible waveforms x;(t) can be decomposed
into a set of orthogonal functions and projection of the noise
component onto this complex vector space gives in phase and
quadrature components.

The probability density function of the projected noise
component has a Rayleigh probability density function for its
magnitude and a uniform probability density function for the
phase.

Consider now the robust detection statistic where the
signal under detection that has been corrupted by noise. The
output of the detector is given by,

N
=% A fexem), o3 (18a)

Z Aj {(xc n°)2 ns)2}

The aim is to determme the probabxhty density function of the
detection statistic and the probability of false detection which

(18b)
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requires in both cases the evaluation of the probability density
function pn(a; ' y) that has a linear quadratic form

2N
i=

where Z; are mutually independent standardised normal
variables. The analytic evaluation of such a linear quadratic
form has been the subject of many papers. The analytic
expression for the probability of a linear quadratic form is not
trivial. The expression given here can be found in the paper by
Kotz et al [5]. The first step is to obtain the Laplace transform
of the overall probability density function of the linear
quadratic form (LQF), given by (20).
2 1
Lp(s) = exp( - E 81 %4 lb[I (l + 2S(1i0'i2) 2. (20)
i=1(1 + 20;0%s) [ i=1
What is required is an expansion of the probability density
function of the form,

pole: 8 y)= X af Bl xln+2 ysB). @1
k=0

where
Pn(a; 3; y)= T ag ok 22)
k=0

if © =T'(s) this implies that s = q)(@) which enables a moment
generating function to be defined as,

m(e)= L/I(OL; 5; <p(9))/§[¢(9)] = kZO ay ek. (3
By choosing a %2 distribution expansion,
gs)=(1 +2sB) 2 T1(s)=(1 +2sp)’!

o(0)=(1-0)2po, fol0)] =0V =1-piy; (9
and then substituting into the moment generating function
gives

a =M(0) A e-v/2 (25)
. )
withv= Y &f,
i=1
k-1
=kl 3 Of a (26)
=0
n n
of=lxy 5j2y‘."1+Lz (1-1;8]2)7‘.‘ el 2D
2 =177 25=:1 ]

The coefficient used for the analytic receiver operating curves
where generated by a program written in matlab. The examples
which follow in the next section show the advantages and the
cost incurred in using a robust detection filter.

5.0 Application of robust detection.

In this section two examples are given to demonstrate the
use of robust detection of signals. The robust detection scheme
is compared to that of a matched filter. So that a fair
comparison is made between these detection approaches the
outputs of the matched filter and the robust detector are
normalised so that each has the same noise power output.

5.1 Robust detection of a sinusoidal signal.

In this example the robust detection scheme is used on a
sinusoidal function whose value of frequency is not exactly
known, but assumed to lie within a frequency region.

Figure 1 shows a comparison between the robust detector
and the matched filter output as a function of the deviation from
the nominal frequency. It can be seen that when the nominal
frequency on which the matched filter was designed varies then
the performance of the matched filter degrades. The output of
the robust detection for the same noise power output does not
perform as well as the matched filter when the frequency of the
signal is near nominal frequency, but still performs reasonably
well when the frequency deviates from its nominal frequency.

To see the effect of varying the frequency of the sinusoidal
signal the corresponding AROC where obtained. The deviation
frequency values where 0 (corresponding the nominal
frequency), .25, .5, .75, 1. The results of the experiment where
plotted in figure 2. As shown in this figure the effect of
varying the frequency away from the nominal frequency
degrades the performance for the matched filter. This can be
seen as the probability of detection deceased and the
probability of false detection increased with the AROC
approaching the diagonal line (equal probability of false
detection and detection) as the deviation frequency increased .

In comparison the AROC were plotted on the same graph
for the robust detector, shown as a ‘+’ symbol. The deviation
frequencies where the same, however the results show that the
robust detector was more tolerant to variations to the signal
frequency.

5.2 Robust detection of a linear FM signal with
unknown chirp rate.

In this example the signal under detection is a linear FM
signal. Here the exact value of the chirp rate is not known, but
assumed to lie within an interval, where 0 and o, denote the
upper and lower chirp rates respectively. A matched filter was
designed for the case where the value of the chirp rate was 0.
Figure 3 shows the outputs for both the matched filter and the
robust detector. Here as the signal's chirp rate increases it can
be seen that the performance of the matched filter degrades,
whereas the robust output still gave reasonable resulits.

The nominal chirp rate in the experiment was .25 Hz/sec
and the chirp rate was increased in steps of .005 until the chirp
rate was .27 Hz/sec. The AROC, figure 4, for the robust detector
plotted on the same graph shows that for all the variations in
the chirp rate of the signal the performance of the robust
detector stayed the same.

6.0 Conclusions.

This paper has proposed a robust detection statistic for
signals whose parameters are uncertain. It was shown that a
more robust detection scheme can be achieved by a generalised
time-frequency pattern, that defines a class of detectable
signals, was decomposed into a set of orthonormal
eigenfunction and so by considering only the dominant
eigenvalues a reduced order correlation statistic was obtained.
This resulting statistic can not be otherwise implemented by a
corresponding linear process illustrating the important feature
that components inherent in the robust detector interact with
other to produce the desired response.
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Figure 1 Detector outputs for Example 1.
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Figure 2 AROC Curve for Example 1.

The performance of the robust detection statistic was also
evaluated with the aid of receiver operating curves which
evolved the analytic derivation of the probabilities of
detection and false alarm based on central chi squared
expansion of a linear quadratic form.

It was shown that the robust detection statistic under
nominal conditions did not perform as well as standard
detection scheme, as one would expect, but gave better
performance when the parameters of the signals deviated away
from its nominal conditions. More detailed information about
this work can be found in [6].

Acknowledgements: The authors thank the Australian
Cooperative Research Centre for Robust and Adaptive Systems
for their financial support.

7.0 References.

[1] L. Cohen, “Generalized phase space distribution
functions”, J. Math. Phys., Vol. 7, pp. 781-786, 1966.

Matched detection - Robust detection --

15 . , . , .
301
25
€
2
L2
© 201
<]
(&
[
o
S 15}
[
S
(5]
1ok e .
ST
5k S \ 4
, \
A N
d 7 3y
8.1 0.15 0.2 0.25 0.3 0.35 0.4
chimp rate Hz/sec.
Figure 3 Detector outputs for Example 2.
ROC matched™-" robust*+*
1 - -
0.9f \ P % 1
e Z
o8k el Z4 d
+ 4
© 7
a 0.7+ a + f ~ 7
c 7 e
8 + “
80861 + Sl
< N b e
° " ]
- 0.5 . i
> . 4
5045 . = graph | chirp rate | detector
s At number | (Hz/sec) ype
<} + e
2 0.3t & O a 0.25 -
& A
- - b 0.255 Matched
+ . c 0.26 filter
0.2p 74" 74 d 0265
y /v e 0.27
R~ f 025-0.27 Robust |
44 detector
L ; H R
[¢] 0.2 0.4 0.6 0.8 1

Probability of false detection Pf

Figure 4 AROC Curves for Example 2.

(2] N.M. Marinovic and G. Eichmann, “An expansion of
Wigner distribution and its applications”, [EEE Int. Conf.
Acoustics, Speech and Signal Processing, 1985, pp. 1021-
1024.

[3] L.B. White, “Transition kernels for bilinear time-
frequency distributions” IEEE trans. Signal Processing, v. 39,
no. 2, 1991.

[4] M.G. Amin and M.T. Schiavoni, “Time-varying spectrum
estimation via multidimensional filter representation”, SPIE
Advanced Algorithms and Architectures for Signal Processing,
Vol. 1152, San Diego, 1989.

{51 S. Kotz, N.L. Johnson and D.W. Boyd, “Series
representation of distributions of quadratic forms in normal
variables II. non-central case”, Ann. of statistical Math.,pp
838-848, 1966.

{6] O.P. Kenny and L.B. White, “Roust detcetion of signal
classes”, submitted to /EEE Trans on Signal Processing, 1994.

3134



