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ABSTRACT

A common problem in active sonar is that of multipath
propagation in the ocean environment. A generalized likeli-
hood ratio test (GLRT) approach is developed for detecting
multiple target returns with unknown time delays and am-
plitudes in reverberation. The reverberation is modeled by
a scattering function that is assumed to be described by the
power spectral density of a complex autoregressive process.
The generalized likelihood ratio test detector is described
and its performance is compared to the clairvoyant optimal
processor and an ad hoc processor.

1. PROBLEM STATEMENT

A common problem in active sonar is that of multipath
propagation in the ocean environment. As a result, target
reflections may appear at the receiver at different times,
which are, unfortunately, unknown apriori. These returns
may or may not overlap in time. To improve detection
performance, we could time delay, scale, and phase these
returns to coherently combine them. The difficulty in doing
so is in the estimation of the amplitudes and time delays of
the target returns. To do so, we model the ocean/target as
a complex low-pass random linear time invariant filter with
impulse response A[n] = g[n] + > | . Aié[n — ni].

The impulse response of the ﬁlter is assumed to be
nonzero over the interval [0, Ny — 1]. We have decomposed
the impulse response into a non-specular component g[n],
modeled as a tapped delay line of length Ny, and a specu-
lar component that is a weighted sum of ¢ Dirac impulses
[1]. The nonspecular component characterizes the rever-
beration, while the specular component represents the tar-
get(s). We assume the g{n] are samples from a complex
independent Gaussian random process, g[r] ~ CA(0, b[n]),
where the b{n], the variance of the tap weights, comprise
the sampled range scattering function. The complex ampli-
tudes A; and the time delays n; of the target are of interest
to us, as are the b[n] so that we may prewhiten the data.

The output of this channel, whose input is the trans-
mitted signal s[n], is

Ng—1 q
z[n] = Z glk]s[n — k] + Z Ais[n — n;] + w[n],
n—=0,1,...,NT—2'._ (1)
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The known complex low-pass signal s[n] is assumed to be
nonzero over the interval [0, N; — 1] with energy
£=Y""""1|sn]> =1, and Nr = Ng+N, = Ny. Ambient
noise, w[n[j has been added to the channel output The w(n]
are samples from a complex Gaussian wide sense stationary
(WSS) white noise process (w[n] ~ CA(0,02)), and are
independent of the g[n].

Given N ~ Nt = N, samples of z[n], we perform an N
point DFT and approximate the linear convolution found in
(1) with a circular convolution and write in the frequency
domain

Gk]S[k] + Zq: AiS[kle™ 2™ N L Wik),

X[k} =
i=1
k=0,1,2,...,N -1, )
where the DFT of z[n] is X[k] = ij::; z[n]e 72 kN,
k=20,1,2,...,N — 1. Then, assuming
S*[k] > £{W? K]}, k=0,1,2,...,N =1 (3)

and S[k] # 0, £ = 0,1,2,...,
X[k]/S[k] to yield

N — 1, we form Y[k] =

q
Yk] = Glk]+ ) _ Aie™™ /N k=0,1,2,....N-1 (4)

i=1

This is equivalent to a sum of complex sinusoids in
colored noise. The frequencies of the complex sinusoids
(fi = —ni/N) in (4) contain the time delay information
of interest to us. The G[k] are samples of a zero mean com-
plex Gaussian WSS process. We choose to model G[k] as a
complex autoregressive process of known order p (AR(p))
with Power Spectral Density (PSD)

0,2

a[m —127mA |

b(A) = ()

1+ 20
Here X represents a normalized time delay A = A/Ty, where
A represents time delay and 7 represents the total multi-
path spread of the channel [2]. We choose 0 < A <1 as
the basic period, so that the variance of the tap weights are
b[n]_b()\—-lg) n=0,1,2,...,Ng— 1.
The PSD relationship in (5) 1mphes that the G[k] satisfy
Glk] = , a[r]G[k —n]+u[k], where u[k] ~ CN(0, o?).

n=1
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Hence we have transformed the problem to one of es-
timating the amplitudes A; and frequencies f; of complex
sinusoids in complex AR noise with unknown parameters
a = [a[1]a[2]...a[p]]T and 0.

We are now ready to pose the detection problem. It has
been transformed to that of detecting a signal in colored
noise. Under Ho, when there are no targets present, the
data consist of samples from a complex AR(p) process and
under H; the data consist of the sum of ¢ complex sinusoids
in complex AR(p) noise. That is,

Ho : Y[k] =Gk
(6)
Hy : Y[k]=Gk]+S[k], k=0,1,...,N -1,

where S'[k] = ST Al

In this paper the theory of generalized likelihood ra-
tio testing will be used to derive a detector structure for
the binary hypothesis problem posed in (6). This approach
requires maximum likelihood estimates (MLE) of the un-
known parameters under Ho and H;. These MLE results
may be found in [3].

2. GLRT DETECTOR

The GLRT technique is a common method for detecting
signals in noise when either or both are characterized by
unknown parameters [4]. Given the data Y = [[Y[0]Y]1]...
Y[N —1]]7, the GLRT technique forms the modified likeli-

hood ratio

D1 (Y;Ayf.v é-11[7f) (7)
po (Y; a0, &g)

where p; is the PDF under hypothesis H;, A, f, a;, and

6% are the MLE of their respective parameters under My,

and &g and &% are the MLE of their respective parameters

under Ho. The GLRT detector compares lg; pr = InlgLaT
to a threshold ¥ and if

lgLar =

lgzrr =lnpi —lnpo > v = Hy

Isirr =Ilnpy —Inpy < v = Ho.

Substitution of the MLE’s of the parameters from [3]
into (7) ylelds I’GLRT =

YEPLY,
YEH [Pff - P4E (E#PLE) ™ EHP}-,] Y,

N max In

s

(8)

where N' = N — p, Yp=[Y[pIY[p+1]... Y[V - 17,
P4 =1-H(H”H)" H¥ E =[ere:...eq],
e; = [ejhfepeﬂfrf((pﬂ) o 61’21rf.'(N—1)]T’ and

Yip-1 Y[p-2] ... Y[o]
L | YR YR-uo Y[1]

Y[N - 2] Y[N:— 3] YN S 7]

Note that (8) requires a search over a g-dimensional space.
In general, the performance of a GLRT detector is diffi-
cult to obtain, although the asymptotic (large data record)
performance of a GLRT detector is related to the asymp-
totic statistics of the MLE used in the modified likelihood
ratio ([4]). Under certain regularity conditions, the asymp-
totic distribution of the GLRT detector test statistic is chi-
square under both hypotheses with different noncentrality
parameters. For the current problem, the regularity condi-
tions require that A, f, a, and o2 be estimable under Hj.
Unfortunately f is not. An investigation of this distribution
is the subject of an on going study and will be reported on
in the future. Also, modifications to the GLRT that yield
tractable performance results have been investigated [5]
With an additional assumption, a second GLRT detec-
tor can be constructed that does meet the regularity condi-
tions. Ifin the previous problem, the frequencies in (4) were
known (i.e. known target time delays), the development of
the test statistic would proceed exactly as above without
the need to find the maximum over f in (8). We will refer

to this statistic as IICI;LRT. That is, for the case of known
frequencies (time delays), lgrpr =

Hpl
vl YIPEY,
yE [Pfl — PLE (EMPLE)” EHPJ,;] Y,

. (9)

It can be shown that the asymptotic performance of
2151 py is chi-square with 2 degrees of freedom (DOF) [4].
Under Ho, the distribution is central, and under H; it is
noncentral with noncentrality parameter Scrrr. That is,
Mo : 21gLrr~x2(24,0), and M1 : 21G, rr~X?(24, BoLRT)-
The noncentrality parameter is a measure of the discrim-
ination between the two hypotheses and is related to the
Fisher information matrix (FIM) of the real parameter vec-
tors @, = [Re[AT] Im[AT]]T, which characterizes the sig-
nal, and ©, = [Re[a”] Im[aT] 0*]T, which characterizes
the noise [4]. Since we are addressing a signal in noise prob-
lem where the signal characterizes the mean of the data and
the noise characterizes the covariance structure, the FIM
decouples into block diagonal form [6] to yield

Borrr = ©F14.6,(0,0,)0,, (10)

where

o f(olmm ampl)T
tonr 0,0, = (o) ()"}

and where Ig.6,(©r, ©,) is evaluated @, = 0 and the true
values of @, in (10). Note that the decoupling of the FIM
implies that the asymptotic performance of the GLRT de-
tector in (9) is equivalent to the clairvoyant detector,

i.e., the detector that uses perfect knowledge of the noise
parameter vector @, [7].

3. GLRT PERFORMANCE -
KNOWN TIME DELAY

In this section we compare the performance of the GLRT
detector in (9) with two optimal detectors for the case of
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a single target (¢ = 1) located at a known time delay n;
(known frequency fi = —n1/N). The sampled range scat-
tering function, b[n] ,n = 0,1,2,..., Ny — 1 for Ny = 400
shown in Fig. 1 uses an AR(7) model derived from analysis
of actual in-water data. The correlation function of the lin-
ear FM transmit signal used in this study is shown in Fig.
2.

The clairvoyant optimal matched filter (COMF) assumes
that the receive signal is known exactly and the covariance
of the noise is known. The clairvoyant optimal incoherent
matched filter (COIMF) is equivalent to the COMF except
that the complex amplitude of the target is assumed to be
unknown.

If knowledge of A1, n1, and the noise covariance is avail-
able (i.,e., clairvoyant), the binary hypothesis problem re-
duces to that of detecting a known signal in colored Gaus-
sian noise with known covariance matrix. Using (1) and
(3), we can pose the detection problem in the time domain
a's’

Ho : x= ng
; (12)
H1 M X=C,g+A1T,,

where x = [z[0]z[1]...z[N — 1]}7, g = [g[0]g[1]...g[N —
1]]7, C, is the (N x N) nonsingular convolution matrix
of the transmit signal, and T, is formed from the vector
s = [s[0]s[1]...s[N, — 1]]T by T, = [0Z, sT 0% _n,_n,1”
where 0, is an n-dimensional vector of zeros.

Under Ho and H;, x is a complex Gaussian random
vector; Ho : x ~ CN(O,R:), H1 : x ~ CN (A1T.,R:).
Here R, the covariance of x, is R: = & {C,ggHCf} =
C,R,CH where R, = £ {ggH} is a diagonal matrix whose
main diagonal comsists of 5[0],8[1],...,8{N —1]. We will
assume b{n] > 0V n. Therefore, R; is positive definite.

The well known solution is to prewhiten the noise and
then implement a filter matched to the signal at the output
of the prewhitener [1]. The test statistic is

lcomr = 2Re [AITIRT x] . (13)
Given lcoumF is found via a linear operation on X, it is a
real Gaussian scalar random variable, and it can be shown
[6] that Ho : lcomr ~ N(O, a%‘OMF)v -
Hi : lcomr ~ N (pcomr,0tomr), Where pcour =
obomr =2APTYR;'T..

It may be unrealistic to assume that one would ever
know the complex amplitude of the specular return. In this
case it can be shown [1] that the optimum processor is the
COIMF that forms the test statistic

lcoIMF = |TfR;1x|2. (14)

If lcormr is normalized by the known quantity TR T,,
the resulting statistic is x* with two DOF (a derivation with
real varibles can be found in {8]). Under Hp it is central and
under H; it is noncentral with noncentrality parameter

Becormr = 2|A:|*TIR;T,. (15)

As noted in section 2, the GLRT detector in (9) is
asymptotically equivalent to the detector that uses perfect
knowledge of the noise parameters, therefore it is equivalent
to the COIMF and Bcrrr = Bcormr.

For a fixed value of Pj, = 0.001, the probability of
detection for each of the techniques was computed as the
time delay of the specular return was allowed to range from
ny =1 to ny = Ng. With 4; = 1, the results are shown in
Fig. 3.

4. GLRT PERFORMANCE -
UNKNOWN TIME DELAY

In the previous section we investigated the asymptotic per-
formance of the GLRT detector when the location of the
specular return was known. As noted in Section 2, the gen-
eral performance of the GLRT detector (8) ,when the loca-
tion of the specular return(s) is unknown, is very difficult
to analyze. However, Monte Carlo techniques can be used
to compute performance for specific cases. In this section
detection performance of the GLRT technique for the case
of a single specular return will be presented. It will be com-
pared to the performance of an ad hoc approach we refer
to as the normalized incoherent matched filter (NIMF).

The NIMF approach uses an incoherent matched filter
(IMF), and, in an attempt to provide for a constant false
alarm rate (CFAR), performs a normalization on the IMF
output. The IMF forms the test statistic [8]

limp(ny) = |SHXn1 , (16)

where Xn, = [z[n1]z[r1 +1]... z[r1 + N, —1]}]7. The NIMF
then forms the test statistic

|2

limr(ny) (17)

’

Intmr(n) = —
limr
where, Iy = %Zf\; Iramr(mi), and the Irpr(mi) are
computed from data sets X, in the vicinity of xn,.

Two tests will be described using the sampled scatter-
ing function and transmit signal from the previous section.
In the first scenario, a specular target return with ampli-
tude A; = /15 is located at time delay n, = 180. In the
second scenario, a specular target return with amplitude
A; = /5 is located at time delay n; = 300. The target in
the second scenario is located at a time delay at which the
scattering function is relatively constant or ‘white’, while
in the first scenario, the scattering function is not constant
but ‘colored’ in the vicinity of the target. In both cases, the
NIMF generated the normalization factor using M = 8 sets
of data. For the first case, it was computed from data sets
Xm, , m: = 140,150,160, 170, 190, 200,210, 220 , and for
the second case, the data sets X, , m; = 260, 270, 280, 290,
310, 320, 330, 340 were used. A set of 500 Monte Carlo runs
were made for each scenario.

At this point it is important to clearly define what is
meant by a correct detection. For the case of unknown
time delay(s), both the GLRT and the NIMF compute a
set of statistics — one for each possible value of the time de-
lay(s) of the specular return(s) — and choose the maximum
value as the test statistic. A detection is declared when the
test statistic crosses a threshold. If this occurs under Hi,
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we may define this to be a correct detection, or we may im-
pose an additional requirement that the threshold crossing
occurs at the correct time delay(s). In this investigation, we
will use the latter definition and if, under H;, a threshold
crossing occurs at an incorrect time delay, it will be counted
as a false alarm.

A receiver operating characteristic (ROC) curve for the
GLRT derived from the simulation data for the two cases is
shown in Fig. 4. Note that due to the definition of correct
detection used in this investigation, a probability of detec-
tion of 1 is not achieved in either case. ROC curves for
the NIMF for the two cases are shown in the figure. The
most important thing to note is that, due to normalization,
the NIMF performs poorly relative to the GLRT - partic-
ularly from the point of view of the maximum attainable
probability of detection.
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Figure 4: GLRT and NIMF ROC Curves
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