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ABSTRACT

In this paper, we address the simultaneous detection
and classification of signal arrivals, as well as the esti-
mation of source parameters of signals impinging on an
array of sensors. We develop a procedure for short-time
stationary broadband signal propagation in a shallow
ocean. The procedure will be applied to sensor data
obtained from a towed horizontal receiver array in the
Baltic Sea for interpreting the impinging signals.

We apply a multiple test procedure to three prop-
agation models: a Green’s function model, uncorre-
lated normal modes and plane waves. We apply an
F-test which calculates signal to noise ratios for the
three models, and seléct the model with highest SNR.
Thereby, we are able to classify previous phantom bear-
ing estimations as uncorrelated normal mode propaga-
tion originating from the towing ship itself.

1. INTRODUCTION

We investigate an algorithm for testing how many sig-
nals are impinging on the array in a specified time in-
terval. This method has been successfully applied to
seismic data [1] and sonar data [2] in the context of
plane wave models before. In this contribution we ap-
ply the combined estimation- and test-procedure in a
matched-field approach to data obtained by a towed
horizontal array. The steering vector is replaced by
a model vector which contains samples of the Green’s
function to the acoustic propagation problem. In this
way, we incorporate effects of correlated signal arrivals
directly into the model.

To be able to identify signal arrivals which origi-
nate from the same source, but have lost their cross-
correlation underway between source and receiver, we
develop a model with uncorrelated normal modes.

Furthermore, we are able to identify the impinging
signals as stemming from one of three selected models.
We calculate the broadband F-variable for the three
models presented in sec. 2 and selected the maximum
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value among them.

The paper is organized as follows: in the next sec-
tion we formulate the acoustic propagation model. Sec-
tion 3 is devoted to the data model. In sec.4 we briefly
describe the theoretical background of the F-test ap-
plied to our propagation models. Thereafter, we present
some experiments conducted with real world passive
sonar data. We conclude with some remarks.

2. PROPAGATION MODELS

The Green’s Function G(r,r,,w) is the acoustic re-
sponse observed at location r = (r, ¢, z) to a monochro-
matic point source at r, = (ro,%s,%). The solu-
tion to the wave equation for a horizontally stratified
ocean is expanded in a discrete set of normal modes 1,
(¢ =1...A), which is an accurate approximation if the
signal source is located not too closely to the receiving
array

A
Glr,row) = Y Yal(2)a(z0)HS (kaR). (1)
a=1

More precisely, we neglect the contribution of the

continuous eigen values of the associated Sturm-Liou-
ville equation. H ((,1) denotes the Hankel function. R
is the horizontal distance between source- and obser-
vation point. The modal functions 1, and correspond-
ing wave-numbers k, are obtained numerically by solv-
ing a Sturm-Liouville eigenvalue problem subject to a
Dirichlet boundary condition at the ocean surface and
the Sommerfeld radiation condition in the sub-bottom
region [3]. For the F-Test described in section 4 we use
the following three signal propagation models.
(M1) Green’s function model with correlated normal
modes: the Green’s function (1) is sampled at V sensor
locations, which are stacked into the steering vector g.
(M2) An incoherent normal mode model. The individ-
ual modes have lost their cross-correlation properties
during their individual travel from source to receiver.
For that we introduce uncorrelated random factors of
the terms summed up in (1).
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For this model, we use as much steering vectors ¢
per source as there are modes arriving from. -
(M3) For far field sources we used propagation in form
of plane waves e/ ¥7 <028,

3. DATA MODEL
We use the propagation model to describe the out-
put of the horizontal sensor array with N elements.
The array output is sampled after low pass filtering
and divided into K stretches of duration T. Each of
these data stretches in turn are divided into K’ time
pieces of length T/ = T/K’. They are short time
Fourier-transformed using multiple windows [4] to ob-
tain X; (w) for k = 1...K' and ! = 0,...(L - 1).
The number L of orthonormal windows used depends
on the selected analysis bandwidth W. Here, we used

W=1Hz.
T'-1

Xi,w)= 30 w0 Wzt + TR, (2)
t=0
with a set of orthonormal data tapers u‘(l)(T, W) (the
Slepian sequences, see [5]).
The cross spectral density matrix (CSDM) of the

sensor data Cx (w) is estimated non-parametrically by
L-1 K'
6xw) = 25 3 L Xui@)Xi@) ()
1=0 k=1
during each time-step. This is motivated by the asymp-
totic independence of Fourier-transformed stretches and
the orthogonality of the Slepian windows.

The CSDM of the array output can be expressed by
Cx(w,d,) = Hw,§{)Cs(w, ¥, )H* (w, §) + v(w)I where
Cs is the diagonal CSDM of the signals and v(w) is the
CSDM of sensor noise 1. Diagonality of the noise term
v(w)Iis justified by choosing sensor spacing larger than
the correlation length of environmental noise.

Vector ¥, summarizes all unknown parameters at
w. These parameters can be divided into those, that
enter linearly into the model, i.e. v(w) and the vector
¥, and those parameters £ that enter in a nonlinear
fashion (source positions, etc). The columns of the
transfer function H(w,§) Consist of a combination of
the model vectors g, d, ﬁ

Hw, €, )=(..g...d...%...)
and depends on the unknown locations r,,, of m =
1...M sources which are summarised in a single pa-
rameter vector £, ,.

The distribution of X k,(w) is known asymptoti-
cally: they are approximately independent and identi-
cally complex normal random vectors, with zero mean
and CSDM Cx(w,d,). Approximate conditional ML
estimates for the broadband case based on these as-
sumptions are described previously [6].

lthe asterisk * means conjugate transpose

4. MATCHED FIELD F-TEST

The transformed data (2) are known to be asymp-
totically conditionally normal distributed with mean
H(w, §)Sk,i(w) and covariance matrix v1. The Fourier-
transformed signal Sk (w) is defined similar to (2).
This motivates the application of a sequential F'-test for
simultaneous signal detection, classification and source
parameter estimation. The theoretical background for
the F-Test in the single frequency case can be found in
Shumway [7]. The broadband case is described e.g. in
[1, 2] for plane waves in sonar and seismic context.

The F-test constructs ratios of estimated signal-
and noise power quantities. In the numerical procedure
we do not use the data (2) directly, instead we reformu-
late the underlying equations, such that the measure-
ment data enter the procedure solely by the estimated
CSDM (3).

Information about the assumed signal propagation
model (i.e. the environmental parameters, which are
contained in the Green’s function) enters be means of
projection matrices, operating on the estimated CSDM.

Suppose, we have already detected M signals, and
have estimated their associated positional and spectral
parameters. We construct the two projection matri-
ces Py = P(w,§,,) and Py = P(w,éMH), which
project onto the signal subspaces of the first M and
M + 1 signals, respectively. Generally, for large T, the
statistic of the ratio of the sum of squared residuals
(SSR) and the sum squared errors (SSE)

(o) )
23 (=

is doubly non-central F-distributed. However, if there
is no signal present, it can be approximated by a central
F-distribution? with v, = K'(2 + péM“) and v, =
K'(2N -2(M +1) — pQM“) degrees of freedom [7].
For w; # w; the random variables Fyry1(wi,§,, +1),

Fyir(w,€p,,) = ( (4)

FM+1(wj,§M +1) are asymptotically i.i.d. with mean 1

and variance —24(1t13=2) _ pinally we arrive at the
vi(vz—2 vy—4)° y’

broadband statistic

L
FM+1(§M+1): %ZFM+1(U:'1§_M+1), (5)

=1

The exact distributional properties of this quantity are
not known to the authors. One way of approaching
this problem is by approximating FM+1(w,-,_£_M +1) by

?the dimension of vector £ describing the nonlinear parame-
ters of a wave is denoted by pe.
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a x2, distributed random variable. If v; is large, then
T;I'EFM+1(§M )18 x(zy‘ py-distributed.

The procedure is initialised with the null projector
Po(w) = 0. Each test stage in this multiple test proce-
dure is preceded by the estimation of the parameters of
an additional source by maximizing (5) or equivalently
solving the equation of the conditional maximum like-
lihood estimator (CMLE). If the maximum exceeds the
threshold, a new source is detected and the parameters
of all detected sources are simultaneously corrected by
further maximizing (5).

For the experiments described below, we used a
mixed model of near-field coherent and incoherent mul-
timode propagation for some sources and a plane wave
model for sources in large distance from the receiver
array.

5. EXPERIMENTS AND CONCLUSION

The sensor data is recorded in the Baltic Sea (Ocean
depth ~ 50m) with a towed line array of N = 15
sensors equi-spaced by 2.56 m. Sampling frequency
was f, = 1024 Hz after low pass filtering with cut off
f. = 256 Hz. We use a sequence of 10 minutes, divided
into K = 150 stretches of T' = 4s each, in which a sce-
nario of four broadband sources is present. In (3) we
averaged over K’ = 16 periodograms. Analysis band-
width in (2) was W = 1 Hz. The figures below show
some of the obtained results.

Figure 1 shows the result of an F-test with plane
wave model (M3) for all sources. We can clearly ob-
serve 5 plane waves impinging on the array. During the
experiment only 4 ships were present: the ships asso-
ciated with the initial bearings at 82°,105°,150° and
the towing ship at endfire-position 0°. The bearings at
22°,40° are phantoms.

Secondly, we applied an F-test for model (M1) for
all sources. This approach didn’t work well. We will
clarify the reason below. Next, we used the following
subtractive method: The co-ordinates of the towing
ship are estimated for each data stretch individually
by the method presented in [3]. We subtract the as-
sociated multimode signal from the data in frequency
domain and apply the presented matched-field F-test
with a mixed multimode and plane wave model (M3).
The source at bearing 150° is modeled by plane waves,
whereas all other sources are modeled by the Green’s
function approach (M1). The result is presented in
fig.2. Unexplained bearing estimations which do not
correspond to any ships in the given scenario, at bear-
ings 22° and 40° [2] vanish in this figure. Thereby we
had stronger reason to believe that the signals at these
bearings indeed belong to multimode signals emitted
by the towing ship itself.

Further evidence was supported by simulations car-
ried out by T.Purkop [8], where a single broadband
source with the same spectral density as our real data
and model (M1) was sweeped from 0° to 180° around
the sensor array, see fig. 3. For the source location at
end-fire position ¢, = 0° the F-Test with model (M3)
showed up the estimations at 22°,40°,

Finally, we applied the following approach for simul-
taneous detection, classification and parameter estima-
tion: We calculated the F-variable for all three models
(M1-3) and selected the absolute maximum among
them. If this value is higher than a certain threshold,
we decide in favour of having a signal impinging on the
array. This procedure classifies a signal as one of the
three models. The results are shown in fig.4.

We have shown that an F-test can be used as a flex-
ible signal processing tool, capable of signal detection,
classification of sources and estimating their parame-
ters.
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F-Test for plane wave modet, Simuiated Data (r0=450m,z0=-5m)
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Figure 3: F-Test for plane wave model applied
to simulated data from Green’s function model
with source located at distance r, = 450m,
depth z, = —~5m and cylinder co-ordinate an-
gle po was sweeped from 0° to 180°.

Figure 1: F-Test for plane wave model applied
to real sonar data. The left two traces at 22°
and 40° could not be identified with source
locations

F-Test, Modenmodell (r0=450m, z0 = ~5m), ocean depth 46m
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Figure 4: Mixed model F-Test with the

Figure 2: Results of the F-Test with Green’s
function model applied to real data after sub-
tracting the signal of the towing ship
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following three models described in sec.2,
+:uncorrelated normal-mode, *:Green’s func-
tion, e:plane waves. The figure shows the esti-
mated bearings and the signal classifications.



