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ABSTRACT

A technique 1s presented for the estimation of a set
of parameters associated with a geologically motivated
model for seafloor microroughness due to Goff and Jor-
dan {1]. The method seeks to connect the spatial co-
variance of the backscattered acoustic field with the
correlation properties of the seafloor by constructing
the a posterior: probability density function (pdf) of
the parameters that define the seafloor microroughness
wavenumber spectrum. The processor maximizes the
jointa posterior: probability density of the model pa-
rameter set. Due to the complexity of the probability
surface, the method of simulated annealing is used to
search for the globally optimum solution vector.

1. INTRODUCTION

High frequency acoustic remote sensing of the statisti-
cal variability in small-scale seafloor relief represents an
important mechanism for improving our understand-
ing of marine geological relief forming processes such
as sediment deposition, abyssal circulation, and bio-
turbation. In this work, a technique is presented for
the estimation of a set of five parameters associated
with a geologically motivated model for seafloor micro-
roughness due to Goff and Jordan [1]. The approach
operates on full field (amplitude and phase) observa-
tions of the bottom interacting acoustic field and is
based on the premise that statistical fluctuations of the
amplitude and phase of bottom reverberation will be
influenced mainly by bottom features on the order of
the wavelength of the acoustic carrier signal. In ef-
fect, the method attempts to connect the spatial co-
variance of the backscattered acoustic field with the
correlation properties of the seafloor by constructing
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the a posteriori probability density function (pdf) of a
set of parameters that define the seafloor microrough-
ness wavenumber spectrum. Observations of acoustic
backscatter received at a horizontal array are simulated
using full-field acoustic modeling derived from the 3 -
D Kirchhoff approximation to the Helmholtz integral
equation. The optimum processor maximizes the jointa
posteriori probability density of the 5-dimensional sur-
face roughness parameter set. Due to the complexity
of the objective function, the method of simulated an-
nealing is used to search for the globally optimum solu-
tion vector. The MAP estimation of anisotropic Goff-
Jordan seafloor roughness spectrum parameters from
acoustic backscatter was first proposed by Premus and
Alexandrou [2]. In that work, the authors used obser-
vations of backscattering strength angular dependence
to infer seafloor roughness statistics. The work de-
scribed herein extends the earlier treatment of [2] by
exploiting spatial coherence information contained in
the backscattered acoustic field.

2. THE GOFF-JORDAN SURFACE MODEL

The surface parameterization employed in this work,
due to Goff and Jordan [1], is an anisotropic fractal-
based description of seafloor geomorphology with five
free parameters to control the correlation properties of
the surface roughness: rms height H, cross-lineation
characteristic wavenumber k,, along-lineation charac-
teristic wavenumber k,, lineation direction (,, and frac-
tal dimension D. The 2-D wavenumber spectrum as-
sumes an anisotropic power-law form given by

Pr(k) = drvH? | Q |_% [uz(k) + 1]—(V+1) (1)

where v is related to the fractal dimension, Q is the
scale matrix related to the characteristic wavenumbers
kn and k,, and u(k) represents the dimensionless norm
of the wavenumber k.
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The capability of the model to simulate naturally
occurring seafloor microroughness is illustrated in Fig-
ure 1. This figure depicts a sedimented seafloor province
with a highly lineated, rippled appearance attributable
to the influence of abyssal currents on the distribu-
tion of sediments [3]. This surface realization is char-
acterized by the parameter set H = .0125 m, &k, =
2.5 cycles/m, ks = 0.5 cycles/m, D = 1.6, and (, =
45°, measured clockwise from the y-axis. Note that
the axes of the plot are normalized with respect to an
acoustic wavelength. This scaling convention serves to
emphasize the fact that the surface roughness to which
the Bayesian processor will be sensitive is of the order
of the sonar carrier wavelength.

3. THE HELMHOLTZ-KIRCHOFF
ACOUSTIC MODEL

Physical modeling of the scattered acoustic field is based
on the 3-dimensional Kirchhoff approximation to the
Helmholtz integral equation. In the Kirchhoff formula-
tion, the boundary condition at the interface is approx-
imated by equating the scattered field at each element
of the rough interface by that which would exist if the
scattering element were part of an infinite plane tan-
gent to the surface at the given point. From Beckmann
and Spizzichino [4], the Kirchhoff solution for the field
scattered from a randomly rough interface is given by
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where £, {;, and &, represent the surface height, z-
gradient, and y-gradient, respectively; «, 8, and ¥ rep-
resent the z, y, and 2z components of the unit difference
between the incident and scattered wavevectors; D is
a Gaussian beampattern introduced to suppress edge
effects; and ® is the local plane-wave reflection coef-
ficient. Full field realizations of acoustic backscatter
are simulated by applying (2) to independent realiza-
tions of Goff-Jordan type seafloor microroughness de-
rived from (1).

4. MAP ESTIMATION OF SURFACE
ROUGHNESS PARAMETERS VIA
SIMULATED ANNEALING

From Bayes’ Theorem, the a posteriori probability den-
sity function of the surface roughness parameter set ¥
can be written as

px g (X | ®)pg(¥)
Jerx g(X, ©)dT

rgx(¥|X) = (3)

where le‘Il(X | ®) represents the likelihood function
of the observation vector X, and pX',I,(X, ¥) is the
joint pdf of the observation vector and the model pa-
rameters.

The likelihood function characterizes the stochas-
tic nature of the scattered field due to interaction with
the randomly rough interface. It is of central impor-
tance to the optimum processor as it is the mechanism
through which the data X modifies the prior state of
knowledge of ® [5]. If we assume the a prior: distri-
bution pg (¥) to be non-informative, that is uniform,
corresponding to maximum uncertainty regarding the
knowledge of ¥ in the absence of any observed data,
then the a posterior: pdf of ¥ will be proportional to
the likelihood function

rgx(¥ | X) =Cpx (X | ¥). (4)

From point scattering theory, the likelihood function of
the complex pressure field observation vector r given
the surface model parameters ¥ is N-dimensional, and
Jjointly Gaussian

p(r | ®) = [2m)M? | Q(®) |3]7! exp[—;zl-r*Q"l(‘I')r]

(3)
where ® = {H, ky, ks, (5, D} and Q(¥) represents
the spatial covariance of the scattered field under the
Helmholtz-Kirchhoff formulation [6]. In the event of
uniform a prior: knowledge of ¥, equation (5) repre-
sents the objective function to be maximized.

The energy function defined in (5) is a multi-modal
probability surface defined over a five-dimensional space.
As a result, standard gradient-based search techniques
techniques cannot be used to perform the maximiza-
tion, as they would invariably get trapped in local max-
ima. Instead, the method of simulated annealing is
used to search (5) for the globally optimum solution
vector. The annealing procedure is an iterative process
which involves the random sequential perturbation of
the parameter set and repeated evaluation of the energy
function. The power of the method lies in the finite
probability of acceptance of decreased energy states,
which decreases with each iteration, thereby permit-
ting the escape from sub-optimal local maxima.

The SA process is initialized by randomly sampling
the parameter space using a uniform pdf. At each
subsequent temperature step, the parameter set is per-
turbed according to

O, = O, +57A; (6)

where ( is uniformly distributed over [—1,1], 8 is the
perturbation relaxation parameter, and A; is the max-
imum perturbation allowed for the parameter vector.

3120



The parameter § is chosen to be less than unity to
gradually decrease the perturbation magnitude with

temperature [7].
After the parameter set is perturbed, the energy
change due to the perturbation

AFE = pX|‘I'(X | ‘I’)z‘ - PX|\II(X | ‘I’)i—l (7)

is calculated. If AE > 0, the perturbation is always
accepted. If AE < 0, the perturbation is accepted if

> ;. (8)

Ppoitz = 1 +exp(—AE/T,-)
where 1; is uniformly distributed on [0, 1] and T;, the
temperature at the i-th step, is given by T; = o7,
where 0 < ar < 1.

5. RESULTS

The experimental geometry employed in this simula-
tion study is depicted in Figure 2. A horizontal array
is used to sample the azimuthal dependence of the scat-
tered field covariance induced by the anisotropic bot-
tom microroughness correlation structure. The dimen-
sions associated with the array geometry, e.g. beam-
print area, range to insonified seafloor patch, maximum
roughness correlation length, etc., were selected such
that the far field criterion is satisfied. The size of the in-
sonified surface patch was selected to span a large num-
ber of surface correlation lengths, generally between 10
and 50, depending on the surface parameters.

The acoustic data set is comprised of 100 inde-
pendent simulated array observations. The observa-
tions were obtained by applying the Kirchhoff scattered
field representation in (2) to independent realizations
of Goff-Jordan surface relief characterized by the sur-
face parameters H = .0175 m, k, = 2.5 cycles/m,
ks = .5 cycles/m, (; = 30°, and D = 1.6. Each real-
ization was insonified at an incidence angle of 20° and
an acoustic frequency of 12 kHz. The startup tem-
perature, Ty, was initialized to 500. The temperature
scaling parameter, ar, was .976. The perturbation re-
laxation parameter, 3, was .99, with one perturbation
per temperature step. Uniform prior knowledge of all 5
surface parameters was assumed, with upper and lower
bounds summarized in Table 1. A representative result
of the M AP estimation procedure based on backscatter
spatial coherence using the simulated annealing tech-
nique is illustrated in Fig. 3. Convergence performance
for all five parameters is excellent.

6. CONCLUSIONS

To the best of our knowledge, this result represents the
first attempt at the optimum estimation of anisotropic

surface roughness statistics based on the physical mod-
eling of acoustic backscatter spatial coherence. It is be-
lieved that this estimation approach represents a sig-
nificant advance over an earlier estimation technique
based on observations of backscattering strength angu-
lar dependence [2]. While the estimation results ob-
tained with each method are equally good, the sonar
configuration presented herein is much more practical
to implement with regard to the nature of the ship
track required to obtain adequate azimuthal sampling
of the scattered field horizontal wavenumber space. In
the case of MAP estimation of Goff-Jordan surface pa-
rameters from backscatter angular dependence [2], 360°
azimuthal sampling would require a ship to traverse
a spiral path as a function of range. For estimation
from backscatter spatial coherence, the horizontal ar-
ray samples the azimuthal correlation structure in the
reverberation field as the ship traverses a straight line
path over a spatially homogeneous seafloor province.
Further, the estimation based on backscatter spatial co-
herence does not involve any preprocessing of the data
(e.g. summing squares of quadrature components) and
thus does not discard phase information.

The application of the parameter estimation theory
framework to the characterization of the properties of
the rough seabed is by no means limited to statistical
inference of the microroughness wavenumber spectrum
parameters. The next step will be to consider the opti-
mum estimation of subbottom properties based on the
statistics of the backscattered acoustic field. In partic-
ular, it is believed that optimum estimation techniques
will be particularly suited to the estimation of corre-
lation parameters associated with physical models for
randomly inhomogeneous ocean subbottom sediment
layers.
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Source
HPBW =0.3"

Goff-Jordan Parameter || Lower Bound | Upper Bound
H .00l m 03125 m
kn .25 cye/m 2.5 cye/m
ks .25 cye/m 2.5 eyc/m
s 0° 180°
D 1.5 2.4

Table 1: Lower and upper bounds on simulated anneal-

ing search space.

h/ lambda

-6

y / lambda

Figure 1: Simulated microroughness realization char-
acteristic of a rippled sediment field.

r = 10002
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Figure 2: Receiver array geometry (plan view).
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Figure 3: MAP estimation performance via simulated
annealing. Actual parameter values are H = .0175 m,
kn = 2.5 cyc/m, ks = 0.5 cyc/m, (s = 30°, and D =
1.6. L denotes the energy function.
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