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ABSTRACT

Matched-field source localization methods attempt to
estimate the range and depth of a source in an acous-
tic waveguide. These methods give good results when
the waveguide parameters are known precisely; how-
ever, matched-field methods have been shown to be
very sensitive to model mismatch resulting from errors
in the assumed environmental parameters. In this pa-
per, we describe an approach which minimizes model
mismatch by estimating the environmental parameters
and source location togetfxer. We propose an efficient
way to initialize the maximum-likelihood search by pro-
jecting the received data onto subspaces corresponding
to regions in parameter space.

1. INTRODUCTION

Matched-field source localization methods attempt to
estimate the range and depth of a source in an acoustic
waveguide. The measured sound field is compared, over
the set of possible source locations, to the sound field
model (called the replica field in the matched-field liter-
ature) which is based on the environmental parameters
of the waveguide. The source location producing the
best match between the measured and modeled sound
fields is assumed to be the true source location. These
methods have been shown to be very sensitive to model
mismatch resulting from errors in the assumed environ-
mental parameters [1],{2]. In this paper, we describe an
approach which minimizes model mismatch by estimat-
ing the environmental parameters and source location
together. Initial environmental parameter values are
obtained from nominal, a priori information.
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2. SIGNAL MODEL

The signal received by the 1th sensor of a vertical line ar-
ray of M omni-directional sensors in an acoustic wave-
guide can be modeled mathematically as (3]

P
u() = se(t) xg(t, 20, ¥) +m(t), (1)
k=1

where sg(t) is the signal emitted by the kth source,
g(t, 2/|®, ¥) is the Green’s function of the medium,
ny(t) is the additive noise at the Ith sensor, and * de-
notes convolution. The lth receiver depth is denoted
z1, the vector @ denotes the unknown source location
parameters of the kth source, and ¥ is the vector of
parameters used to describe the medium (e.g., param-
eters of the sound velocity profile or channel depth).
In this case, the parameters of interest are range and
depth, therefore the estimation problem is to determine
Ok = [re, 28 |T.

The transfer function between source k and the re-
ceiver located at depth z; can be obtained by Fourier
transforming the Green’s function of the medium,

G(w, z|Ok, ¥) = F {g(t, 21|O, L)} .

At large horizontal distances between the source and
receiver in an acoustic waveguide, G{w, z;|®, ¥) can
be approximated by a normal mode expansion [4]

Q
G(w,Z[IGk,‘I’) = Z am(gka‘p)¢M(Zla‘I’) (2)
m=1

where Q is the number of propagating modes. The
modal functions are found by solving the separated
wave equation [5].

If we sample the signals received at each sensor over
an interval of T seconds, we can obtain a frequency do-
main representation of the output of each sensor by dis-
crete Fourier transforming (DFT) the samples. When
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T is much larger than the difference in propagation
times of the fastest and slowest modes traversing the
entire distance between the source and array, a fre-
quency domain approximation to (1) can be written

[6]

P
yl(wn) = Zsk(wn)G(wnszllekv‘I’) +nl(wn)a (3)
k=1

where y;(wy, ) is the nth DFT coefficient of the 1k sensor,
s (wy) is the nth DFT coefficient of the kth source, and
ni{wy,) is the nth DFT coefficient of the noise at the 1th
sensor.

Equation (3) can be written in matrix form as

y(wn) = A(wn, ©, ¥)s(wn) + n(wn), (4)
where

Y(wn) = [yl(wn) .- 'yM(wn)]T )
A(wp,0,%) = [a(wn, ©1,F) - a(wn,Op, ¥)],

a(Wn, Ok, ¥) = [G(wn, 21|Ok, ¥) - - - G(wn, 201|O%, ¥)] T,

e=[ef...e}]",
s(wn) = [s1(wn) - sp(wn)]TT,
n(w,) = [n1(wa) - - nar(wn)]

: (5)
3. MAXIMUM-LIKELIHOOD ESTIMATOR

3.1. Known Environment

Consider the case of a narrow band signal that can be
represented by a single DFT coefficient. The likelihood
function for N independent observations of the sensor
array is p({y:},1©,{s:}¥,;) which equals

N
K exp {— > lly: — A(®, ‘If)s,-u'g;x} . (8

i=1

where K is a constant and R;;! is the inverse of the
noise cross-spectral matrix, R, = E {nn”}, which is
assumed known. Maximization of (6) is equivalent to
minimizing the argument of its exponential. Therefore,
the maximum-likelihood (ML) estimates of A(®) and
s; result by solving

N
6,8 =arg g}g;llyi ~A@©,¥)sillpz: - (D
1=

Substituting the optimal values of s; into (7) results in
a simpler optimization problem involving only ©,

~

N
© =arg mein Z ”(I - A(©,%)A% (0, ‘I’))}’z”

i=1

2
R;!?

(8)

where A# = (AHR_1A)"'A#R?, or equivalently,

N
O =arg mgxz “A(@, T)A#(O, ‘I’)yiHZR:I . (9)

i=1

3.2. Uncertain Environment

The ML estimator of (9) assumes precise knowledge of
the environmental parameters of the channel. Errors in
the assumed environmental parameters will cause the
maximum of (9) to occur at a value of ® away from
the true source locations. In this case, the uncertain
environmental parameters need to be estimated also
and the ML estimator for the source locations and the
environmental parameters is

N
® =arg mg.xz “A(‘I’)A#(‘I’)Yz'“;;l ) (10)

i=1

where the vector ® = [@7 ¥T|7 is a concatenation of
all the parameters to be estimated.

Consider an environment in which the sound veloc-
ity profile (SVP) is uncertain. The SVP can be mod-
eled as the weighted sum of empirical orthogonal func-
tions (EOF), ¢i(2), [7] as

L
c(z) =D aioi(z) + col2), (11)

=1

where co(z) is the mean sound speed and -1 < gy < 1.
The EOF’s can be computed from a historical database
of measured SVP files by performing a singular value
decomposition of the estimated SVP covariance matrix
[8]. The environmental parameter vector ¥ contains
the EOF coefficients g; in (11).

4. ML ESTIMATOR IMPLEMENTATION

4.1. Conventional Implementation

The implementation of the ML estimator in (10) re-
quires a nonlinear multivariate search over all the source
locations and uncertain environmental parameters. An
efficient means of searching the likelihood surface for its
peak is required for the estimator to be useful in practi-
cal applications. Generally, the search is conducted in
two steps. First, a coarse grid search over the parame-
ters to be estimated is performed on the surface. This
coarse estimate is then used as the initial estimate for a
gradient-based search in step two. Unfortunately, poor
performance can result if the grid spacing is selected
too coarsely and the peak is narrow or if the likelihood
surface is very oscillatory and the initial estimate is not
near the main lobe of the peak.
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As an example, we will look at the log-likelihood
surface (the norm in (10)) for a typical acoustic wave-
guide scenario. The waveguide consists of a 110 meter
water layer over a 3.5 meter sediment layer above base-
ment rock. Layer depths are considered range invari-
ant. The SVP is modeled using a single EOF in (11),
i.e. L =1, with ¢ = 0.4. The receive array consists
of 11 evenly spaced sensors at a separation of 5 meters
with the shallowest sensor at a depth of 25 meters. We
consider the case of a single source of frequency 100
Hz located at 10000 meters in range and 50 meters in
depth. In this case, the norm in (10) is the norm of the
data vector projected onto a replica vector which is a
function of source location and environmental parame-
ters. The noise cross-spectral matrix is assumed to be
the identity.

Fig. 1 shows a cross section through the log-likelihood

surface parallel to the range axis with z* and r fixed at
their correct values. A cross section through the log-
likelihood surface with g and r fixed at their correct
values is shown in Fig. 2 and Fig. 3 shows a cross sec-
tion with g and z*® fixed. Notice the oscillatory nature
of the cross sections and the sharpness of the peaks.
At the cost of increased computation, more grid points
could be computed to broaden the peaks and decrease
the possibility of missing them. The main lobe widths
and side lobe heights of the cross sections vary signif-
icantly with frequency, source location, and environ-
ment. Therefore, without complete a priori knowledge
of the environment and the source and its location, se-
lection of the most efficient grid spacing is difficult.

4.2. Replica Subspace Projection

In the case of a single source, we propose replacing
the projection onto a replica vector with a projection
onto a replica subspace. The subspaces are generated
by sets of replica vectors computed at evenly spaced
points over fixed intervals in both source location and
environmental parameters for all possible combinations
of the points. The projection matrix onto each sub-
space is computed from the singular value decomposi-
tion (SVD) of the matrix whose columns are the set
of replica vectors for that subspace. The subspaces
can be abutted or overlapped. The surface obtained
by projecting onto replica subspaces will be called the
smoothed log-likelihood surface. The smoothed surface
can be obtained with significantly less evaluations of
(10). However, generating the sets of replica vectors
along with the SVD computed for each set increases
the amount of computation to the level of a replica
vector fine grid calculation.

Using the same scenario as before, cross sections
through the smoothed log-likelihood surface using the

replica subspace projections were calculated. Fig. 1
shows a cross section using subspaces with r fixed at
range values of 9960 — 10060 meters and z° fixed at
depth values of 48 — 52 meters. Although difficult to
see on the plot, the peak of the smoothed log-likelihood
surface is at the correct value. In Fig. 2, a cross section
is shown using subspaces with g fixed at 0.4, r fixed at
range values of 9960 — 10060 meters, and each z* was
5 meters wide and overlapped the adjacent subspace
by 2.5 meters. The values are plotted at the center of
each subspace. Fig. 3 shows a cross section with g
fixed at 0.4, z° fixed at depth values of 48 — 52 meters,
and each r was 100 meters wide and overlapped the
adjacent subspace by 80 meters.

Figures 1 and 2 show that, with respect to source
depth and EOF coefficient, the smoothed log-likelihood
surface is amenable to a search technique that does
not require evaluation of a complete grid of subspaces.
The cross section of the surface with respect to range
shown in Fig. 3 is not as smooth as the previous two
plots. Fig. 3 indicates that there is an approximate
periodicity in range with a period of about 200 m. This
suggests that a better way to form replica subspaces
in range would be to use a group of intervals spaced
at about 200 m to form a single subspace. Using a
group of intervals in range should give a much smoother
surface.

An alternative to the approach described in this
section was proposed in [9]. This alternate approach is
essentially replica vector grid searches over source lo-
cation averaged over all possible environments. There-
fore, it appears to be susceptible to the grid spacing
difficulties discussed earlier and is also computation-
ally expensive.

5. CONCLUSIONS

This paper presented a maximume-likelihood estimator
for source location and environmental parameter es-
timation in an uncertain sound speed, acoustic wave-
guide. A method using replica subspace projections to
search the log-likelihood surface was described. This
method was seen to produce a much smoother log-
likelihood surface. It was seen that a thorough search
of the surface could be performed with much fewer
function evaluations, but the increased computations
required for generating the subspaces made the total
computations equivalent to performing a replica vector
fine grid search. Future work will be to develop an ef-
ficient search strategy on the smoothed log-likelihood
surface.
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