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ABSTRACT

Source localization in a waveguide involves a multi-
dimensional search procedure. In this paper we pro-
pose a new algorithm, in which the search in the depth
direction is replaced by polynomial rooting. The pro-
posed algorithm decreases the search dimension to one
for a 2D localization problem (range and depth) and
to two for a 3D one (range, depth, and direction-of ar-
rival (DOA)), independently of the number of sources.
Consequently, the presented algorithm requires signifi-
cantly less computation.

1. INTRODUCTION

In recent years, there has been a growing interest in
passive source localization in an ocean waveguide. In
particular, several Matched Field Processing (MFP)
techniques have been developed. MFP techniques ex-
ploit the complex multipath propagation model. Many
algorithms, which use the full wave acoustic propaga-
tion model of complex multipath conditions in an ocean
waveguide have been developed (e.g. [2, 4]) to estimate
source location parameters such as range, depth and
DOA. All of these algorithms involve a multi dimen-
sional search procedure, which should be performed
on the space consisting of source location parameter,
signal spectrum/cross-spectrum and the environmental
parameters. For instance, in the maximum-likelihood
(ML) approach, when the number of sources or the
number of unknown parameters increases, the search
dimension grows accordingly. A grid search procedure
1s necessary, since the ambiguity surface in most of the
matched field estimators have many false (local) peaks
and simple gradient search methods will therefore not
find the global maximum.

A signal subspace decomposition approach for this
problem has been developed in [4]. It was also shown
that the performance of this method is very close to
the ML one. Since the amount of computation does
not increase when the number of sources grows, this
approach does offer an advantage over the ML. Still, a
multi-dimensional search over range, depth and DOA
in addition to other nuisance parameters is required.

In this paper, we propose a localization method
based on the generalization of the polynomial rooting
approach to MFP applications. This approach was de-
veloped for planar wave field and linear equi-spaced
array in [1] and it was extended to spherical wave field
and an arbitrary array shape in [7].

As in eigenstructure-based methods, the search di-
mension of the algorithm is independent of the number
of sources. The method involves a search procedure
over the range and other unknown environmental pa-
rameters combined with polynomial rooting which re-
places the search in the depth direction. Due to the
excellent polynomial rooting routines that are avail-
able, it is generally accepted that polynomial rooting
1s preferable other methods of searching, specially when
the ambiguity surface is not smooth, such that a high
density grid should be chosen.

2. PROBLEM FORMULATION

We consider L point sources, located in a waveguide.
Each source radiates a narrowband stochastic signal
{si(t)}£., centered at w,. The waveguide is assumed
to be deterministic and time invariant. The excited
field is sampled by a general three dimensional array of
N sensors, satisfying N > L. The sensors are located
at (z;,24),t = 1,---, N, where z; is the position of
sensor 1 in the horizontal plane and z; denotes its depth.
The sensor locations are assumed to be known. The
location of source ! is defined by (6,7, 2;), denoting
its direction, range and depth (see figures 1 and 2).
Under the far field assumption, where the range n
1s large compared with the array aperture, the range

. -t
7y from source ! to sensor ¢ is: ry =+ k (61)z;, and
by using the complex (analytic) signal representation,
the field measured by sensor i can be expressed by (see

e.g. [6]):

M
yi(t) = Z Z Pm(2)dm(2ai)
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Figure 1: Problem geometry
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Figure 2: Problem geometry - horizontal plane (top view)

where {(j)m(-)}ﬂ=1 are the modal depth eigenfunctions

and {.«:,-,.,},A:=1 are the modal horizontal wavenumbers.
M is the number of propagating modes in the channel
and n;(t) denotes the additive noise at sensor i. We
assume that the signals and the noise are stationary
and ergodic complex valued random processes with zero
mean. '

The Fourier coefficient of (1) at a single frequency
w, 1IN matrix notation is:

L
y=Y T@,rn)®z)5+n2 As+n,  (2)
=1

where
A =[a(f,7r1,21),- - ,a(fr,rr,zL)] ,

a(91,r1, 21) é T(91, 1‘1)@(21), l= 1, - -,L .

In (2) [y}i and [n]; denote the Fourier coefficients at
the frequency w, of the measurement and the noise,
respectively, in sensor ¢, and [s]; = § stands for the
corresponding Fourier coefficients of the {th signal.
The elements of the matrix T(8;,r;) and the vector
®(:z) are given by:
eI Rm(ri+E (81)z;)

[T(61, T'I)]im = @j%fﬁm(zai)T ,  (3)

[2(20)]m = ¢m(21) - (4)
We collect K snapshots and rewrite equation (2) for
each snapshot:

y(k) = As(k) +n(k), k=1, K.  (5)

Our goal is to estimate the source location parame-
ters. {0;. 1, = }E | from the measurements {y(k)}£_ .

3. HOMOGENEOUS WAVEGUIDE

In this section, we present the polynomial rooting ap-
proach for source depth estimation in a homogeneous
waveguide. It follows from our assumptions that:

Ry 2 E{y(k)y(k)¥} = ARsA¥ +Rn , (6)

Rs £ E{s(k)s(k)7} (7)
Rn £ E{n(k)n(k)¥} . (8)

Assuming that the vectors a(6;, i, z1) and a(6;, 75, z;)
are linearly independent for every I, =1,-.., L, # j,
it follows that VH A = 0, where V is the matrix of the
N — L eigenvectors corresponding to the N — L smallest
eigenvalues of the matrix pencil (Ry, Rn). The MU-
SIC algorithm exploits these properties of the covari-
ance matrix Ry. It suggests the following procedure:

1. Estimate the covariance matrix Ry by:
5 K
Ry = % Ek:l y(k)yH(k) ’

2. Compute V, the noise subspace eigenvectors of
Ry (i.e the eigenvectors associated with the N —
L smallest eigenvalues).

3. Find the L lowest minima of the function:

Q,r z2) = aH(B, 7, z)VVHa(H, rz) . (9)

The minima of Q(@, r,z) can be found by perform-
ing a three dimensional search. Due to the existence of
local minima, this procedure is computationally expen-
sive, since it requires a three dimensional search over a
high density grid.

In a homogeneous waveguide, with depth D (see
fig. 1) and boundary conditions: ¢m(z)|,_, = 0 and
dom

dz =
2/ Dsinym z, where v, = (m — %) & is the vertical
wavenumber of the mth mode. Thus, the elements of
the array manifold, a(é,r, z), are:

V2/D

25

M
Snosen]. a

= 0, the mth mode eigenfunction is ¢m(2) =

a;{f,r,z) =

M
Y Time’ B(m-1):
m=1

A ix .
Let define w as: w = e/ 57, so that equation (10) can
be written as:

V2/D ) Tt
ai(0,7,2) = —2§—w(_M+5) 3 Fimpaw™. (11)
m=0
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The ith row of F is given by:
[Fl: 2 [~Ting, = T, Ty, Tom] - (12)

Using (11) for the array manifold expression, equation
(9) can be written by a different function Q(8,r, w):

Q,rw)= %g(l/W)FH(H,T)VVHF(g,r)g(W), (13)
where g 2 (1,w, - JweM-1T

The expression Q(f,r, w) in equation (13) is a poly-
nomial in w of order 4M — 2. For true values of § and
r, the roots of Q(#, r, w) are located on the unit circle
and they correspond to w; = &/ 5% where z is the
depth of the Ith source. Due to the estimation errors
of the covariance matrix Ry, these roots are located
near the unit circle and they minimize the expression
Q(8,r,w). We propose to compute the roots of the
polynomial Q(8, r, w) for every 6§ and r, instead of the
search over 8, r, z. By search over § and r, we generate
the localization function:

G, r) = 1

1—|wo(8,7)| ’
on which the maximization will be carried out. For giv-
en 8§ and r, w,(@, r) denotes the closest root to the unit
circle. The L highest peaks of G(8,r) corresponds to
the positions of the L sources. In this way, we reduced
the search dimension by one.

(14)

Note, that the coefficients of the polynomial @Q(8, r, w)

are real. Therefore, for each complex root w,, there ex-
ists another root at w). In addition, (13) shows that
for each root w,, there exists a root at 1/w,. That
is, each complex root w, is related to three additional
roots: wi, 1/w, and 1/w}.

4. NON-HOMOGENEOUS WAVEGUIDE

Now, we extend the algorithm to non-homogeneous
waveguides. Consider a variable propagation velocity
profile in the waveguide, with the following assump-
tions:
e The propagation velocity satisfies:
e(z.z)=c(z), Yz and z € [0. D]

e The channel depth is constant: D(z) = D, V z.

The eigenfunction of the mth mode, satisfies the fol-
lowing normal mode equation:
d*Pm(2)

w2
— 2+ 21+ (2)m(2) = ph¥m(z) o (15)

with the boundary conditions of the homogeneous prob-
lem. Therefore, ¥, (z) can be expressed by linear com-
bination of the homogeneous eigenfunctions:

Ym(2) = ) Prjoj(z) ,m=1,--, M. (16)

i=1

Assume smooth propagation velocity profile. Then %,,(z)
are smooth, and they can be approximated by a lin-
ear combination of finite spectral components, enabling
truncation of the series:

J
Ym(2) =Y Prmjdi(z) , J>m, m=1,..,M,
ji=1
(17)
and in a vector notation: ¥(z) = P®(z). For smooth
propagation velocity profile, fast decay of the coeffi-
cients Pp,; is guaranteed. The matrix P and the hori-
zontal wavenumbers p,, can be found according to the
procedure described in [4]. If the propagation velocity
profile is available, then the matrix P is known. Now

Q(8,r, z) from equation (9) can be expressed by:

Q(G, r,2) = (18)
7 (2) (106, r)P)vaH (Te, r)P) 3(z)

where T(0,r) is given by (3) with the new eigenfunc-
tions ¥, (z) and horizontal wavenumbers .

This interpretation enables to perform the polyno-
mial rooting operation as with the homogeneous waveg-
uide on Q(, r, z), where the matrix T(8,r) is replaced
by T(8,r)P.

This approach can be used in any other generalized
mode] (e.g. the adiabatic normal mode model used in
[3]), in which the boundary conditions are identical to
those of the homogeneous problem.

5. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed algorithm and compare it to the ML estimator
performance. The following scenario describes a typical
problem of source localization in an underwater acous-
tic waveguide, but for the sake of simplicity matter we
assume a homogeneous waveguide.

The field was generated by a point source, located
at a depth of z, = 78m below the upper surface of a
homogeneous waveguide consisting of two parallel in-
finite plates, with a depth of D = 100m. The source
radiates a stochastic and narrow-band signal centered
at frequency of f = 100H z. The propagation velocity
in the waveguide is ¢ = 1500m/sec. These conditions
enable propagation of 13 modes in the waveguide.

The generated field is sampled by a vertical array,
located at a distance of 10km from the source. The
array consists of 30 sensors with 2m spacing. The cen-
ter of the array was located 49 meters below the upper
surface. The additive noise at the sensors is zero-mean,
Gaussian and i.i.d. The SN R at each sensor depends
on its depth. Here, we defined SNR as the average
SN R per sensor.
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Figure 3 depicts the function G(r) from equation
(14) versus the range with an SN R of 0dB. This figure
shows that the nearest root to the unit circle is at the
true range. The angle of this root corresponds to the
estimated depth (78.02m).

The performance of this algorithm is evaluated us-
ing 100 Monte Carlo trials. The results are shown in
figure 4. For comparison, we evaluated the Cramer-
Rao bound. The results of the algorithm achieves the
CRB at high SN R, indicating the efficiency of the algo-
rithm, i.e. imsyRr—oo cOV(Ar, Az) = CRB(r, z). This
conclusion is supported by also performance analysis
results of this algorithm derived in [5].

At SNR of ~ —12dB a threshold phenomenon is
observed. This threshold is caused by convergence of
the algorithm in local maxima. In order to compare
the location of this threshold, a corresponding Monte
Carlo simulation on the ML estimator was carried out.
The threshold for the ML is at ~ —17dB, about 5dB
below the polynomial rooting algorithm. In [5], the
performance of this algorithm was studied analytically

6. SUMMARY

In this paper a new algorithm for source localization
in a waveguide is presented. The performance of the
algorithm is studied numerically and it is compared
to the CRB and ML slmulations. The algorithm was
shown to be efficient, while being computationally sim-
pler than other existing algorithms, such as ML or MU-
SIC. This method generalizes the polynomial rooting
approach to non-planar wavefronts, as encountered in
non-homogeneous and/or bounded environments.
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Figure 3: The localization function G(r) for a vertical array
with a source located at range of 10km and depth 78m.
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Figure 4: Range and depth error standard deviation versus
SNR. Monte Carlo simulations based on 100 independent
trials of the proposed estimator{+) compared to ML esti-
mator results (*) and CRB (solid line).
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