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ABSTRACT

The eigenvector method for estimating the positions of the
receivers of an ocean-towed array is based on the eigende-
composition of the array signal correlation matrix to find
the phase delays between the array receivers. Previous
work has shown that for reasonable SNR, the bias and var-
iance of the phase estimates is relatively independent of
the number of receivers in the array. This suggests that the
computational cost of the eigenvector method could be
substantially improved by partitioning the array receivers
into groups of smaller sub-arrays and then applying the
eigenvector method to each sub-array. This paper intro-
duces the interleaved partitioned eigenvector method, and
shows that it significantly reduces the computational cost
without adversely affecting the quality of the position esti-
mates. Numerical examples substantiate the theoretical
work of this paper and also demonstrate the improvement
in beamforming when employing the shape estimation
algorithm.

1. INTRODUCTION

The eigenvector method [1] is an algorithm for estimating
the positions of the receivers mounted on a towed flexible
array. It is based on the measurement of the phase delays
between the array receivers of a narrowband planewave
source in the presence of uncorrelated noise. With the
knowledge of the wavelength and direction of the source,
and using certain physical constraints, the relative phase
delays are used to estimate the receiver positions.

The relative phase delays are calculated by perform-
ing an eigendecomposition of the correlation matrix of the
receiver outputs. The number of computations required is
approximately proportional to the cube of the number of
array receivers [2]. For arrays with many receivers this
computational load could pose a serious problem.

A potentially simple solution to the problem of com-
putational cost is to partition the array into several smaller
sub-arrays and to perform the eigenvector method upon
each of them. This has the added attraction that with
appropriate hardware, the eigendecomposition of each of
the smaller correlation matrices can be performed concur-
rently. However it is necessary to consider the effect of
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reducing the size of the correlation matrix on the accuracy
of the position estimates.

If the correlation matrix is known exactly then the rel-
ative phase delays can be calculated exactly and independ-
ently of the number of receivers and SNR. However when
finite sampling is used to estimate the correlation matrix
the statistical performance of the eigenvector method is
required. Previous work [3] has shown that position esti-
mation accuracy is indeed relatively independent of the
correlation matrix size. In fact, for more than around 6
receivers and reasonable levels of uncorrelated noise and
number of sampling snapshots, the improvement of posi-
tion estimation accuracy with a higher number of receiv-
ers, is insignificant. This suggests that array partitioning is
a practical solution to the problem of reducing the compu-
tational complexity of the eigenvector method.

In [4] two partitioning techniques were introduced for
nominally linear arrays : interleaved partitioning and seg-
mented partitioning. The segmented approach divides the
array into sub-arrays of consecutive receivers while the
interleaved approach physically separates the receivers in
each sub-array. The basis behind the interleaved approach
is that it will be more robust against spatially correlated
noise. This issue is investigated in [4]. This paper concen-
trates on the interleaved partitioning technique although
the statistical analysis is similar for both.

Section 2 describes the interleaved partitioning eigen-
vector method and gives the reduction in computational
requirements for the eigendecomposition.

Section 3 gives an approximation to the bias and vari-
ance of the position estimates and then discusses the effi-
ciency of the partitioned and non-partitioned eigenvector
methods in the sense of minimizing the variance and bias
of the position estimates and the computational complex-
ity.

Section 4 validates the expressions presented in sec-
tion 3 with numerical simulations. It also gives an example
of the improvement in beamforming when using the shape
estimation algorithm.

2. THE INTERLEAVED PARTITIONED EIGEN-
VECTOR METHOD

This section briefly describes the theoretical background to
the eigenvector method and then shows how it is modified
to form the interleaved partitioned eigenvector method.
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Finally this section calculates the computational advantage
of interleaved partitioning.

2.1 The Eigenvector Method

The correlation matrix of the output of an array with L
receivers when there is a single narrowband planewave
source impinging upon the array in the presence of uncor-
related noise, is :

R=E[x(t)xH(0)] = o25(6)s" (6) +o2I (1)

where o2 is the source power, o2 is the white noise
power observed on one receiver of the array, and s (8) is
the steering vector in the source direction, 0.

Let p = [p;,....p, 1T denote the eigenvector corre-
sponding to the largest eigenvalue of R. It is shown in [5]
that p is proportional to the steering vector of the array in
the direction of the source and can therefore be used to cal-
culate the phase change of the source from receiver i to
receiver j :

A¢,',j = arg (PJ) -arg (P,‘) = ‘bj‘d), 2)

If the shape of the array is relatively linear, the source
direction is away from the general direction of the array,
and the source wavelength A is greater than or equal to
twice the array receiver spacing 7, then the position of the
i receiver is given by [1] :

%= cos8 Y d;+sin0 Y P - ©)
j=2 j=2
y; = smezd cosez Jr2 - d? @

j=2
where dj is the phase dJStance defined by :

A
dj = 2'—nA¢(j—l),j (5)

2.2 Interleaved Partitioning

The mechanics of interleaved partitioning can most
easily be described by first makmg two definitions.

* Define the term ‘receiver spacmg to be the distance
between consecutive receivers in a linear array. Assume
that the receiver spacings are all equal.

* Define the term ‘interleaved factor’ to be the number of
receiver spacings between two consecutive receivers in
an interleaved sub-array. Assume that the interleaved
factors are all equal.

Interleaved partitioning is achieved by dividing an
array into sub-arrays in which consecutive receivers have a
fixed interleaved factor, S;. The interleaved sub-arrays
have no common receivers. An additional sub-array named
the link sub-array, has one receiver in each interleaved
sub-arrray. The link sub-array has a receiver spacing of
one greater than the interleaved factor. Figure 1 gives an
example of interleaved partitioning.
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Figure 1. An example of interleaved partitioning
with Sy = 3 and 9 receivers.

A correlation matrix is calculated for each sub-array
and using the eigenvector method, the relative phases
between receivers in each sub-array can be calculated.
Since the sub-arrays have common receivers (via the link
sub-array) it is simple to calculate the relative phases
between each pair of consecutive receivers, and apply
equations (3) to (5) to get the position estimates.

2.3 Computational Advantage of Partitioning

For an array of L receivers, the computational cost of
the eigenvector method is approximately [2] :

Cpy < L3 ©

For an array partitioned into sub-arrays with inter-
leaved factor S;, then the computational cost of the inter-
leaved partitioning method is approximately :

S!
Cp= Y (M, )3+5} )
i=l

where M, ; is the number of receivers in the i’ sub-
array.

Equation (7) can be minimized by selecting S; as
|_ L_|. Assuming L is a large square number then

M, = §, and the cost becomes approximately :

Cppoe L2 ®
This represents a computational cost reduction of the
order of L over the non-partitioned eigenvector method.
3. POSITION ESTIMATE STATISTICS

In practice, the receiver position estimates are calculated
using an estimate of R. This section gives the approximate
statistics of the position estimates when the maximum like-
lihood estimator of R is used, i.e. :

K
A 1 H
R = Ekglx(k)x (k) ¢))

where x (k) is a vector representing the k™ snapshot of the
array output and K is the total number of independent
snapshots.

3.1 Bias and Variance of the Position Estimates

In [3] the bias and variance of the i** receiver position
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estimate are derived in the form of a 2™ order series
expans1on of the random variables d;, .. dL when equa-
tion (9) is used to estimate R. They are shown to be accu-
rate if the mean and hlgher order statistics of d are small,
i.e. the array shape lies in the general vicinity of the x axis
and the calibrating source is close to broadside. Since par-
titioning only affects the statistics of the phases estimates,
these expressions apply to both the partitioned and non-
partitioned eigenvector methods. The expressions are :

i ~2
Bias[i] = Z(r [d] 8[;1:] Jr? dz) (10)
=2
Var[i] = ¥ ¥ (Cov [d;, ] -
j=2k=2 (11)
E[d}d}) -E[dNE[d}] )
4r2

3.2 Phase Distance Statistics

The first and second order statistics of A¢, for a sin-
gle sub-array are derived in [6] using a 22 order Taylor
series expansion. Using these results and (5) gives:

Eld]~d,  Va[d]~ —LB (L) (12)
o 0 V-Hd>1
Covid,d] =~ —kzLﬁ(L) - = (13)
(L * 55%) o2
where B(L) = “orr- ad SNR = 5 (14)

1t is also shown in [6] that with practical values of X,
SNR, L, and small values of d;, the distribution of d is
approximately Gaussian.

To determine the statistics of the phase distance esti-
mates when using the interleaved partitioned eigenvector
method, it is necessary to know the covariance between
relative phase estimates of different sub-arrays and then
use equation (5). The relative phase covariance is derived
in [4] resulting as follows.

Let receivers @ and b (a#b) belong to sub-array x
and receivers ¢ and d (c #d) belong to sub-array y. Then
to a 2™ order approximation :

0 (a#b#c#d)

_1 _ (a=cb#d) or
2KSNR (b=d,axc) (15

-1 _(a=db+#c) or
2KSNR (b=c,a#d)

Cov [A$abr A&cd] ~

3.3 Efficiency of the Partitioned and Non-Partitioned
Eigenvector Methods.

Define the efficiency of an array shape estimation
method to be [4] :

T -1/2
Eff = E[L z Var [i] + (Bias [i])2] (16)

i=1

where C is the computational cost.

Substituting equations (6), (7), (10) - (15) into (16)
would result in complex and not very useful equations.
Instead, a numerical example is presented below :

* A 25 receiver array bent into a complete sinusoid with
max. displacement of 5m, A = 6m, r = 3m, source direc-
tion = 90 deg (broadside), snapshots = 50, SNR = 0dB.

Partitioning  Sub-Array Improvement

Method Size in Efficiency
None 25 1.0
Interleaved 5 17.7

Table 1. Interleaved partitioning efficiency.

4. NUMERICAL EXAMPLES

Simulations were run to verify the expressions for the
receiver position estimation bias and variance using the
array scenario listed in section 3.3. Figure 3 shows the the-
oretical bias and variance of the array receivers when the
shape is estimated using both the interleaved partitioned
(with S;=5) and non-partitioned methods. Figure 4 shows
the bias and variance when the positions are estimated over
500 simulation trials.

The figures demonstrate that for both the interleaved
partitioned and non-partitioned methods, the position bias
accumulates down the array, and that the position variance
remains relatively constant.

The simulation results also support the theoretical pre-
dictions that partitioning does not significantly affect the
quality of the position estimates and shows that the second
order Taylor series expansion provides sufficient approxi-
mation for the position statistics.

A furtber simulation was run to show the beamformer
output power over a range of look directions when using a
LCMYV beamformer with a single linear constraint in the
look direction. A single source at 60 deg. at 0dB SNR was
used to calibrate the array shape, and then moved to 105
deg. for the beamforming. Matrix R was estimated using
the true shape, and the steering vectors calculated using (i)
the true shape, (ii) estimated shape (non-partitioned), (iii)
estimated shape (interleaved partitioned), and (iv) a linear
shape.

The results, plotted in Figure 2, show that the array
shape estimation techniques give a beamformer power out-
put that is similar to that when the true shape is known.
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Note that the two shape estimation techniques gave indis-
tinguishable results.

5. CONCLUSION

The expressions for the position estimation statistics show
that the quality of the estimates are relatively independent
of the number of receivers used to generate the correlation
matrix, The paper shows that the interleaved partitioning
technique yields similar quality estimates to the non-parti-
tioned eigenvector method at a substantially reduced com-
putational cost.

The theoretical statistics are supported with results
from numerical simulations. A further numerical example
demonstrates that the interleaved partitioned eigenvector
method dramatically improves beamformer output power
in the source direction.
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Figure 3. Theoretical bias and variance of the receiver
positions. Solid line :- interleaved partitioned method,

dashed line :- non-partitioned method
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Figure 2. Beamforming with various shape estimates.
Solid line :- true shape, grey line :- linear shape, dotted
line - partitioned & non-partitioned eigenvector
method shape estimates (indistinguishable).
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Figure 4. Simulated bias and variance of the receiver
positions. Solid line :- interleaved partitioned method,

dashed line :- non-partitioned method
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