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ABSTRACT

It is likely that stereophonic (and more generally, multi-
channel) sound pick-up, transmission and diffusion will be
implemented in future teleconference systems to provide the
users with enhanced quality. Therefore, adequate solutions must
be found to solve the problem of stereophonic acoustic echo
which will occur in such systems. We explain in this paper the
difference between the mono and two-channel systems and the
behavior of the two-channel classical adaptive algorithms in
comparison with the same algorithms in the mono-channel case.
Also, we outline a new NLMS-like algorithm derived from the
two-channel RLS algorithm as a first member of a family of
improved two-channel adaptive filters.

1. INTRODUCTION

Acoustic echo cancellers are necessary for communication
systems such as teleconferencing in order to reduce echoes
which impair the quality of communications.

Conceptually, stereophonic acoustic echo cancellation can be
viewed as a straightforward generalization of the usual single
channel acousic echo cancellation principle to the two channel
case [1,2,3]. A basic scheme for stereophonic acoustic echo
cancellation is sketched in figure 1. Note that only one
microphone path is shown because the arrangement is fully
symmetrical with respect to the two microphone signals in the
local room. Clearly, according to this scheme, stereophonic
acoustic echo cancellation fits within the framework of direct
identification of a multi-input, unknown linear system, this latter
one being formed by the parallel combination of the 2 acoustic
paths (W, W,) extending through the local room from the

loudspeakers (HP1, HP2) to the microphone (M). The
stereophonic acoustic echo canceller tries to modelize this
unknown system by a pair of adaptive filters (H,, H,). The
same model applies to the other microphone with the acoustic
paths replaced by the ones appropriate to-that microphone. Also,
a similar canceller system would apply to the distant room.

In the following, we compare the mono-channel to the two-
channel systems.

2, THE STEREOPHONIC ACOUSTIC ECHO
CANCELLATION PROBLEM

We assume that the system (distant room) is stationary,
linear and time invariant; we have the following relation [4]:

X, (n)G, = X;(n)G, (D

where G, and G, stand for the impulse responses of the
source-to-microphone acoustic paths in the remote room as
indicated in figure 1, and X, (n) and X, (n) stand for vectors of
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. . t
signal samples at the microphones outputs in the same room. .
denotes the transpose of a vector or a matrix and :

X,(n)=[xl(n) xl(n-1) xin-M+1)]
X,(n)=[x2(n) x2(n-1) x2(n-M+1)]
G =[g. & Bue)

G, =g, & o]

M being the size of the impulse responses.
Minimization of the following recursive least squares
criterion (see figure 1 for notations) :
@

J(m)=Y w™* [y(p)~ Hi(m) X,(p) - H\(m) X,(p)]
p=1
leads to the equation :
3)

where W (0<w<1) is the exponential forgetting factor,
R(n) the correlation matrix :

R(n)=iw"‘{ }[Xxp) X(p)]

[ Iexlxl (,l) :

Rx:x](n)
and r(n) the correlation vector between the input signals and
the output signal in the local room :

|

Our aim is to obtain the optimum filters from eq. (3). Now
consider the vector :

X.(p)
X,(p)

1?11x2 (’1)
R,.(n)

x2x2

C))

X(p)

&)
X.(p)

r(n)= Zw""’ y(p)|:

v=| & ©)
= -G,
it can be readily verified by using eq. (1) that :
R(mU=0 )]
0-7803-2431-5/95 $4.00 © 1995 |EEE



which means that the matrix R(n) is not invertible. Therefore,
there is no unique solution to the problem of minimizing (2),
and the adaptive algorithm drives to any one of the possible
solutions, which can be very different from the "true" expected
solution H =W,, H, =W,.

However, in practical situations there are - at least - two
reasons that make this matrix invertible :
a) The signals X1 and x2 at the outputs of the distant room
contain noisy components that are uncorrelated ;
b) The filters ( H,, H,) that modelize the impulse responses of

the local room are of finite length, so the size of X, and X, is

much smaller than the length of G, and G, , and the relation (1)
is not satisfied.

Hence the matrix R(n) becomes invertible (but it is ill-
conditioned because the two input signals are strongly
correlated) and the true solution H, =W,, H, =W, can be
found accordingly.

The main difference between the mono-channel case and the
two-channel case lies in the eigenvalue spread C(R) : in the
first case, C(R) depends only on the nature of the input signal,
whereas in the second case C(R) is considerably increased due
to the correlation between the two input signals whatever the
input signals may be. This is a crucial point because the
convergence rate of many adaptive algorithms depends on

C(R).
3. THE RECURSIVE LEAST SQUARES APPROACH

From eq. (3) and equations (4), (5) at time n+1 we can
derive easily the two-channel RLS algorithm. The development
of fast algorithms relies on certain update relations that arise in
the characterization of adaptive forward and backward linear
predictions that are optimized in the least-squares problem. The
other update relations needed for the development of fast
algorithms involve the Kalman gain vector. In this section we
give a fast version of the two-channel RLS algorithm [5], in
which we have implemented a numerical stabilization technique
derived from [6,7] (this version is more simple than the one
proposed in [7]):

®
a)e,(n+)=y(n+1)-A'(n) X(n) (2x1)
by (n+l)=a(n)+e.(n+1)E'(n)e,(n+1) (1x1)

0 1 0

0 +{0 1|E'(n)e,(n+1)
| G'(n)} [-A(n)

[M(n+1)]
| m(n+1) |
G’'(n)el(n+1)

o(n)

e)G'(n+1)= M(n+1)+ Bmym(n+1) (2Lx1)
Nen+H=E (nymn+1) (2x1)

ge(n+)=x(n+1-L)-B'(n)X(n+1) (2x1)
h)eb(n+l)=ke:(n+l)+(1—k)e;(n+l) 2x1

) G/(n+1)

((2L+2)x1)

d) A(n+1)= A(n)+ (2Lx2)

e (n+1)e(n+1)

i) E,(n+1) = (E,(n) + -2 Yw (2%2)
o(n)
Deam+)=a(n+)—(e}(n+1) m(n+1) (1x1)
k)E,,(n+l)=(E,,(n)+e':(n+l)(e':(n+l)) W (2x2)
oa(n+1)
1) Bn+1)= Bny+ 2804 @D 5749
a(n+1)
m)e(n+)=y(n+1)-H (n)X(n+1) (1x1)
) Hnt 1) = Heny+ S DemtD oy
a(n+1)
where :
X' (n)=[x1(n) x2(n)]
X'm=[ym x®-1) - x(n-L+D)]

H'(ny=[h,(n) hy,(n) by () hy(n)]
and the sizes of the vectors and matrices are indicated after each
equation; L is the length of the filters H, and H,, and & is the

feedback constant for numerical stabilization: 1.5<k <2.5.
We have implemented in this algorithm additional controls
which are necessary for continuous operation with non-
stationary signals like speech [6,8]. This recursive least-squares
solution gives good performance but it is very expensive in
terms of number of operations : 28 L multiplications and 28L
additions (instead of 8 L muliplications and 8L additions in the
mono-channel case).

Comparison with the mono-channel RLS algorithm : unlike the
LMS algorithm, the rate of convergence of the RLS is
essentially insensitive to variations in the eigenvalue spread of
the matrix R(n). This property is preserved in the two-channel
case for which the RLS algorithm has almost the same
convergence as the mono-channel RLS algorithm whatever the
input signals may be. On the contrary, the behavior of the LMS
algorithm is severely degraded in the two-channel case as shown
in the following section.

4. THE STOCHASTIC GRADIENT APPROACH
The two-channel LMS algorithm is given by :

e(n+1)=y(n+1)—iX{(n+l)Hi(n) )

i=1

{Hl(n+1)] [Hl(n):| [Xl(n+1)j|
= +u e(n+1) ¢h)]
H,(n+1) H,(n) X,(n+1)

where U is a parameter that controls stability and rate of
convergence. We can easily show that the stability condition is :

O<pu (1D

< L 2 2
(axl + le)
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where 07, and ©7, are the powers of the input signals. When

this condition is satisfied, the weight vector converges to the
optimal solution of Wiener-Hopf.

For nonstationary input signals, we use the two-channel
normalized LMS where U is replaced by :

o
Xl’(n+1)Xl(n+1)+X2'(n+1)X2(n+1) (

tn+)= 12)

with O< <2,

The arithmetic complexity of the two-channel LMS algorithm is
4L multiplications and 4L additions (instead of 2L
multiplications and 2L additions for the mono-channel LMS
algorithm),

A standard analysis in the mean shows that the convergence rate
of this algorithm depends on the eigenvalue spread of the
correlation matrix :

X
E{[ ‘(")][X{ (n) X;(n)]}

X,(n)

Comparison with the mono-channel LMS algorithm : in the
mono-channel case, when the autocorrelation matrix is ill-
conditioned (this is the case of speech input signal), the LMS
converges very slowly and has almost the same convergence
rate as the two-channel LMS algorithm. On the other hand,
when the autocorrelation matrix is well-conditioned (USASI
input signal for instance) the LMS has a good convergence rate
but the two-channel LMS converges still very slowly.

This behavior is due to the fact that in the two-channel case the
correlation matrix is generally ill-conditioned. In other words,
the two-channel LMS will converge very slowly because it
doesn't take into account the cross-correlation between the two
input signals.

5. SIMULATIONS

This section compares by simulation the previous
algorithms. The impulse responses (W,,W,) to be identified
are truncated to 256 points. They were obtained from
measurements in a real teleconference room like the two input
signals. The length of the filters (H,,H,) is L=256. All
plots show the mean-squared modeling error versus the number
of iterations. A white noise is added to the output (SNR=60 dB).
Figure 2 shows the behavior of the two-channel fast RLS with
USASI as input signals, we have verified that the filters
converge to the true solution. Figure 3 shows the convergence
curve of the same algorithm with speech as input signals.
Figures 4 and 5 compare the mono and the two channel LMS
algorithms with USASI and speech as input signals. We can
point out that, as expected, there is a great difference between
the mono-channel and two-channel LMS algorithms with
USASI signals, which is not the case with speech signals.

The mono-channel performance was obtained by adapting
separately each of the two filters (H,,H,) using the
corresponding error then adding the two errors; thus, the total

number of adapted coefficients is 2L like in the two-channel
case.

6. CONCLUSION AND PROSPECTS
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A very important conclusion of this study is that a two-
channel adaptive filtering algorithm should take into account the
cross-correlation between the two input signals to have a good
convergence rate. A direct approximation of the two-channel
RLS algorithm gives a first solution : The "Extended LMS"
(ELMS) algorithm, which is :

(13)
H(n+1 H X (n+1
(n+ D)1 H (7 +o, M (n+1) ¢ )e(n+1)
H,(n+1) H,(n) X,(n+1)
where :
+1)1 r,(n+1)I
M(n+1)= Pulnt DI pra(n+l) (14)
pro(n+I p,(n+1)I
and :
pun+)=X(n+1) X (n+1)
P(n+1)=X,(n+1)X,(n+1)
ro(n+)=X/(n+1)X,(n+1)
The stability conditions of the proposed algorithm are :
O<ea, <1
(15)
0<p<l

The ELMS has a better behavior than the two-channel LMS
algorithm and its arithmetic complexity is 6L multiplications
and 6L additions. This algorithm can be considered as a simple
member of a general family of the two-channel adaptive filters
that take into account cross-correlation of the input signals in a
variable amount.
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Figure 1 : Basic scheme for stereophonic acoustic echo cancellation
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Fig. 2 : Convergence behavior of the two-channel FRLS
algorithm with USASI as input signals
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Fig. 4 : Comparison of the mono (--) and two-channel (-)
LMS algorithms with USASI as input signals
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Convergence behavior of the two-channel FRLS

algorithm with speech as input signals
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Fig. 5 : Comparison of the mono (--) and two-channel (-)
LMS algorithms with speech as input signals
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