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Abstract

We consider the lossless compression of high
fidelity (e.g. 16-bit) digital audio using adaptive
linear prediction. Both linear predictive coding
(LPC) and least mean squares (LMS) predictors
are considered. Preliminary results are presented
for the compression of industry standard Sound
Quality Assessment Material (SQAM) [1]
samples from 16 bits to 1.5 - 3 bits. Previous
results by others on the same audio source was
in the 8-bit range.

Preliminaries

Conventional lossless compression algorithms
(e.g. Lempel-Ziv) do not compress 16-bit digital
audio very well largely because of the wide
dynamic range (i.e. large alphabet) and extended
redundancy of audio samples. We investigate
methods which losslessly reduce the dynamic
range and extract long term correlation. Linear
prediction uses a linear combination of past (and
possibly future) samples to predict the present.
If the predictor is accurate, the difference between
the prediction and the actual value will be small.
A good entropy coder can be used to encode the
error sequence. By saving only the error sequence
and generating the prediction, the original source
sequence can be reproduced perfectly.

1. Error Sequence Generation

The error sequence is generated by an adaptive
finite impulse response (FIR) digital filter. The
poles, or weights, of the filter are adapted using
the LMS or LPC method. The predicted value

X&) is: N
2(%) = 21 w, x(k<j)

where w; are filter weights, x(k) is the source

(1.1)

sequence. The eror sequence efk) is:

e(k) = x(k) - x(k)

(12)
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Signal Reconstruction

The original signal is reconstructed by using the
same FIR filter used at the encoder and adding
the error to the decoder prediction. To guarantee
lossless reproduction, the first N samples of the
source x(n) and the filter weights w; must be
transmitted with the encoded error sequence y(n).
This allows the Nth + 1 sample and beyond to
be predicted using (1.1).

x (k)

Figure 1.1: Error Sequence Generation

2. LMS Introduction

The LMS algorithm adapts the filter weights to
minimize the average power of the error between
the prediction and the actual sample. This
method is popular because of its ease of
implementation and relatively good performance
[1,ch.6]. The following is an overview of of the
LMS algorithm. For more details refer to
reference [1,chs. 2,6]. Converting (1.1) to vector
form yields:

Xk = XiWk 2.D
where:

X, = [x(e-1) x(k-2) .. x(k-N)]

We=1[w,wi ;. win]
Substituting (2.1) into (1.2) yields:

o) = x(9 - X, @2)
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Gradient Estimation

By transforming (2.2) into matrix form, gradient
methods can be used to solve for the optimum
weight vector to produce the minimum mean
square error. For LMS, an estimate of the
gradient is used in a steepest descent algorithm
to approach the actual W, opt[l]. The
instantaneous error power & (k) is used as the
estimate of the mean square error. By taking the
gradient of (2.2) the LMS gradient estimate is:

Vg = 260X, @.3)
and the updated filter weights are
Wier™ Wit Vgy 2.4)

By substituting (2.3) into (2.4) the LMS
algorithm results:

Wy, = W+ 12e(X), @.5)

Equation (2.5) adapts the weights of the linear
predictor where the gain constant p controls the
rate of adaptation. Because the squared
instantaneous error is used as an estimate of the
mean square error, the LMS algorithm is
inherently noisy [l1]. To obtain lossless
reconstruction, the following information must
be transmitted to the decoder:

* Number of weights used in the linear
predictor to produce the error sequence

» The first N 16 bit samples of the audio file

» The N floating point filter weights used to
produce the predicted value for the N+1
sample

* The encoded error sequence for samples N+1
to the length of the original input.

By storing the first N input samples and the N
filter weights, the N+ 1 sample may be predicted
using the same methodology as above. This
predicted value is identical to the prediction at
the encoder because it is produced from the same
input values, the same filter weights and the
same algorithm. By truncating the predicted
value (as is done when the error sequence is
generated) and adding the error for the N+1
sample, the original N+1 sample results.
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LMS Entropy Calculation

We consider the first order entropy of the error
sequences. A histogram of every possible error
value is generated. The error is discrete and
limited to a 16 bit signed value (-32,768 to

32,767). From the histogram the probability
pm) of each emor value is easily calculated
giving the first order entropy:
32786
H=- 3 p)log, p(n) 26)
n=-32768

For a better estimate of the entropy (i.e. entropy
rate) one would use joint distributions of the
etror sequence(4).

LPC Introduction

The LPC (linear predictive coding) method of
lincar prediction attempts to model the audio
samples as an autoregressive process. An
autoregressive process is an all pole filter whose
description matches (1.1). The weights of the
filter are determined by minimizing the square of
the error between the actual and predicted value

2.

Due to the non-stationarity of the audio input,
the autoregressive model is only valid for a short
time. To account for this, the LPC algorithm
produces an autoregressive model for small
blocks of input [3,ch. 12]. For greater detail on
LPC coding refer to [2].

The optimum weights w,for the autoregressive
model are derived by minimizing the error
between the actual value and the predicted value
using the least squares criteria [2]. Squaring
(1.2), differentiating with respect to w, and
setting equal to O to calculate the optimum
weights yields:
N N
= 2x(k) Y, x(k) -2, wixles) ()
i=1 i=1

Using the definition of the autocorrelation

function %) (3.1) reduces to (the Yule-Walker

equation):

N
(3.2)

=Y, wrlk)

i=1



Eq. (3.2) can be put in matrix form.  This
autocorrelation matrix is Toeplitz and positive
semi-definite, which may be solved efficiently
using the Levinson-Durbin algorithm. The
controlling parameters for the LPC
implementation are the block size¢ M and the
number of filter weights N for the autoregressive
model.

Autocorrelation Estimate

An estimate of the autocorrelation values must
be calculated for the sample block. The number
of autocorrelation values needed is N + 1. The
autocorrelation values Tgg[k] must be floating
point values to maintain the accuracy of the
calculated weights w;. It was found that
truncating the autocorrelation values induced
error into the calculated weights when the Yule-
Walker equations were solved. This error would
cause the entropy of the resulting output to begin
to rise as the number of weights was increased
passed a threshold value.

Error Sequence Generation

Once the weights for the input block have been
calculated, the predicted values can be calculated.
For each input in the block, a predicted value is
calculated using (1.1). The resulting prediction
is a floating point value because the filter
weights are floating point. The prediction is
truncated and the error between the actual input
and the truncated prediction is calculated using
(1.2). The error value is saved for use in
reconstruction. This process is repeated for every
input in the block, using the same filter weights
for every prediction. When all the error values
for the block have been calculated, a new block
is read in and the process repeats, starting with
the estimate of the autocorrelation values of the
new block.

Reconstruction

The information needed to losslessly reconstruct
an audio sample sequence using the LPC
prediction method presented above is broken into
two classes: file information and block
information. The file information consists of the
following:

+ The number of filter weights N used to
produce the block error sequence (a 16 bit
value).

» The block size (a 16 bit value).
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It is natural to assume a fixed block size and
fixed number of filter weights throughout. The
block information consists of the following:

» The first N audio samples of the block
not encoded (16 bit values)

» The N floating point filter weights used
for the block prediction (32 bit floating
point values)

» The encoded error sequence for samples
N+1 to the length of the block.

Entropy Calculation

Only the first order entropy of the error for each
block produced by the LPC algorithm is
calculated. A histogram of every possible error
value is generated. The first order block entropy

can be calculated using the histogram
probabilities:
32768
Hk)=- X p(n) log, pn) (3.3)
n=-32768
k=1.2,.. M

The block entropy is averaged to get the first
order entropy estimate

M
kZ_IH(k)
Hipe =~ 11 34
4. Results
For the audio samples, Sound Quality

Assessment Material (SQAM) [5] recordings for
subjective tests were used. The following three

samples from SQAM were used:
Track Sample Duration (sec)
66 Stravinsky 0:18
69 ABBA 0:33
70 Eddie Rabbitt 0:21

The previously known results on these music
samples are given in [6] where a binomial
coefficient predictor achieved a compression ratio
of about 2:1,namely 16-t0-8 bits (the results in
[6] are "compression ratio vs. time" and not
entropy as in our case).



LMS Results. The following tables show the
results of the LMS implementation for SQAM
audio samples. Each row is a specific learning
constant and each column is a specific number of
filter weights. Each table entry is the calculated
entropy for the given learning constant and

number of filter weights.
SQAMG66
3 5 10 20
1x1079 2.6 1.8 1.6 1.5
5x10-10] 3.1 2.2 1.7 1.51
SQAM69
3 5 10 20
1x10-9 2.6 1.9 1.6 1.5
5x10°10 | 3.1 2.1 1.8 1.5
SQAM70
3 5 10 20
1x109 2.6 1.9 1.6 1.5
51010 | 3.0 2.0 1.7 1.5
LPC Results

The following tables show the results of the
LPC implementation for SQAM audio samples
and other music samples. Each row is a specific
block size and each column is a specific number
of filter weights. [Each table entry is the
calculated entropy for the given block size and
number of filter weights.

SQAM66
3 5 10 20
128 6.3 6.0 5.7 5.5
1024 5.5 4.7 3.9 3.6
4096 3.8 3.2 2.6 2.4
8192 3.2 2.7 2.2 2.0
SQAM69
3 5 10 20
128 6.3 6.0 57 3.5
1024 5.5 4.7 3.9 3.6
4096 3.8 3.2 2.6 24
8192 3.2 2.6 2.2 2.0
SQAM70
3 5 10 20
128 6.3 6.0 57 5.5
1024 5.5 4.7 3.9 3.6
4096 3.9 3.2 2.7 24
8192 3.4 2.6 2.3 2.1
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5 Conclusions

A compression technique that uses the well
known LMS and LPC predictors has been used
to losslessy compress high fidelity audio. The
procedure improves the compression ratioes (in
the 8 bit range) to around 1.5-3 bits.
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