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ABSTRACT

Acoustic signal representations used in current audio cod-
ing algorithms can be improved by the incorporation of
biorthogonality into Malvar’s Extended Lapped Transform
(ELT). Biorthogonality allows more flexibility in the de-
sign of the analysis and synthesis windows by increasing
the number of degrees of freedom. This paper examines
this increase for two special cases and demonstrates the
importance of the additional flexibility to the proper imple-
mentation of psychoacoustic modeling, a feature central to
all modern audio compression schemes.

1. INTRODUCTION

Among the most important issues in the design of an audio
compression scheme is the selection of an appropriate and
efficient acoustic signal representation. In conventional au-
dio coders, this representation is derived from a short-time
spectral decomposition which serves to recast the audio sig-
nal in a domain that is not only amenable to perceptual
modeling but also conducive to achieving transform cod-
ing gain. The signal decomposition is commonly achieved
by a multirate filter bank or, equivalently, a lapped trans-
form. In recent years, much attention has been devoted
to the study of these filter banks. Many different designs
have emerged in the context of audio compression, including
schemes that use nonuniform subbands [1] and time-varying
structures [2]. Present throughout these developments are
two criteria that have consistently been regarded as impor-
tant in the construction of these filter banks.

1. Critical Sampling This means that the aggregate
rate of the subband channels is the same as the input
sample rate. Critically sampled filter banks are also
called maximally decimated.

2. Perfect Reconstruction This refers to signal de-
compositions from which the original signal can be
exactly recovered in the absence of quantization dis-
tortion.

Although neither of the two features is essential to au-
dio compression, they are nevertheless desirable. Criti-
cal sampling ensures that subsequent stages of the audio
coder are not required to operate at a higher aggregate
rate than the input sample rate. Perfect reconstruction
allows us to isolate the introduction of signal distortion
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in the quantization-and-coding module, thereby simplify-
ing the system design process.

Malvar’s lapped transforms are popular implementa-
tions of critically sampled perfect-reconstruction filter banks
[3]. Although lapped transforms are intended only to be
uniform filter banks, they are fairly versatile. For example,
the transforms can be cascaded in a hierarchical structure to
yield a composite filter bank with nonuniform subbands [1].
In this paper, we consider improving one particular realiza-
tion of lapped transforms by the incorporation of biorthogo-
nality. One previous work in this direction is described in [4]
in which the Lapped Orthogonal Transform (LOT) is gen-
eralized to become the BiOrthonormal Lapped Transform
(BOLT). We, on the other hand, are primarily interested in
improving the Extended Lapped Transform (ELT).

2. BIORTHOGONALITY IN LAPPED
TRANSFORMS

2.1. The Extended Lapped Transform

Figure 1 shows the general structure of a system based on a
lapped transform. The implementation in the figure is that
of an M-channel filter bank with an overlapping factor of
K. The duration of each transform frame or, equivalently,
the length of each analysis filter is 2K M samples. Note
that the decimation factor for each channel is M, which is
equal to the total number of channels, thereby guaranteeing
that the filter bank is critically sampled.

In its most general form, a lapped transform can be
shown to be completely equivalent to a uniform parauni-
tary multirate filter bank. For the purposes of this paper,
however, we are mainly interested in the particular realiza-
tion that implements a cosine-modulated filter bank. For
this type of filter bank, Malvar has coined the terms, Ex-
tended Lapped Transform (ELT) and Modulated Lapped
Transform (MLT); the MLT corresponds to a special case
(K =1) of the ELT.

In matrix notation, the forward ELT 1s represented by
the 2K M x M matrix P where the (n, k)th element, pnrk,
is given by

o Fes[(o4 ) (2 1) 7] 0

and the inverse transform is similarly represented by Q
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Figure 1: General structure of a system based on a lapped transform.

where gnx is given by

wom s+ 252) (4 2) 2]

In the above notation, it is conventional to refer to A[n]
and f[n] as the analysis window and the synthesis window,
respectively.

2.2. Perfect Reconstruction—Orthogonal Case

The ELT originally conceived by Malvar is an orthogonal
transform in which

P = Q < h[n| = f[n]. )

Aside from equating the analysis window and the synthesis
window, Malvar further stipulates that the windows used
are symmetric, such that

h[2KM -1 —n] = hln]. (4)

Under these assumptions, time-domain analysis shows
that perfect reconstruction is achieved if both the analysis
and synthesis windows satisfy the following constraint:

2K—-1-2s
> hmM +nh[(m+25)M +n] =48(s)  (5)

m=0

for s =0,...,K -1 andn=0,.‘.,%—1. The set of non-
linear equations represents KM /2 independent conditions
on the KM different coefficients in the analysis window.
This leaves KM /2 degrees of freedom for design purposes.

2.3. Perfect Reconstruction—Biorthogonal Case

Relaxation of the requirement in (3), i.e. the analysis win-
dow equals the synthesis window, leads to the loss of or-
thogonality in the transform. Nevertheless, perfect recon-
struction can still be achieved. The resulting filter bank

is known as biorthogonal. For this biorthogonal case, an
equivalent time-domain analysis can be performed to show
that the perfect-reconstruction requirement leads to the fol-
lowing constraints on the coeficients of the analysis and
synthesis windows:

2K-1-2s
Z fImM +nJh{(m +29)M +n] = &) (6)

m=0

2K-1~2s
> (=)™ flmM +n)
m=0

“h{(m +2s)M + (M — n— 1))

o M

fors=0,...,K—landn=0,...,M—1. The 2K M nonlin-
ear equations shown here are not independent. Fortunately,
practical experience has revealed patterns suggesting that
these equations can be reduced to (3K —1)M/2 independent
conditions. Given that there is a combined total of 2K M
different coeflicients in the analysis and synthesis windows,
this leads to (K + 1)M/2 degrees of freedom. If proven,
the result would represent an increase of M/2 degrees of
freedom over the orthogonal formulation. In what follows,
we shall subtantiate this claim for two special cases.

2.4. Special CaseI — K =1

When the overlapping factor is one, only adjacent transform
frames overlap. For this special case, the constraints in (6)
and (7) reduce to

finjh[n] + fln + M]h[n + M]
fInlhln + M] = f[n + M]h[n]

1 (8)
0 (9)

forn =0,..., % — 1. This set of M equations allows M

degrees of freedom in choosing the combined total of 2M
coeflicients in the analysis and synthesis windows.
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One method of satisfying the above conditions is to
choose freely a symmetric window A[n], and then to solve
for f[n] by using
- hin]

R[] + K [n + M]

fin] (10)

An equivalent result has been observed in the context of
time-domain aliasing cancellation [5].

2.5. Special Case II — K = 2

This case is slightly more complicated than the previous
one. After some algebraic manipulation, however, the con-
straints in (6) and (7) can be reduced to the following set
of equations:

flnlhin] + FIM + n]A{M + n]
+f[2M +n]h[2M + n]

+ fBM +n}hBM +n] = 1 (11)
f[n]h[BM + n] — fIM + n]h[2M + 7]
+f[2M + nlh[M + n]
-~ fBM +nlhln] = 0 (12)
flnlA2M +n] + fIM +nlhBM +n] = 0 (13)
Rn]h[2M + 1]+ A[M +nlh[3M +n] = 0 (14)

forn = 0,...,% —1in (11), (12) and (14), and n =
0,...,M — 1 in (13). This' represents 5M/2 independent
conditions on a total of 4M window coefficients leaving
3M/2 degrees of freedom. The increase of M/2 over the
orthogonal case is as predicted.

One way of designing the windows such that the above
conditions are satisfied is to construct first the analysis win-
dow h[n] under the constraint in (14). Once h[n] is chosen,
(11), (12) and (13) form a set of linear equations that can
be solved to yield f[n], the synthesis window.

2.6. Summary

Table I summarizes the results of the two special cases dis-
cussed above. Similar results can be derived for some higher
values of K. It is worth noting that because the increase
in the number of degrees of freedom appears to be M/2 for
all K, the improvement is much more pronounced for the
lower values.

Table I: Summary of the results in sections 2.4 and 2.5.

| [ K [ Orthogonal [ Biorthogonal |
Number of 1 M 2M
Design 2 2M aM
Variables general KM 2KM
Number of 1 M/2 M
Independent 2 M 5M]2
Conditions general KM/2 (3K —1)M/]2
Number of 1 M/2 M
Degrees of 2 M 3M/2
Freedom general KM[?2 (K+1)M/2

L Note that the general case is not yet proven. ]

3. SIGNIFICANCE OF USING
BIORTHOGONALITY

The flexibility gained by incorporating biorthogonality into
the lapped transform can be very useful in the design of au-
dio compression algorithms. To understand fully these ben-
efits requires some knowledge of the use of psychoacoustic
modeling.

3.1. Psychoacoustic Modeling

Much of the recent progress in audio coding can be at-
tributed to successful application of psychoacoustics to the
coding process [6]. Unlike speech coding, and to some ex-
tent image coding, it is difficult to find effective models for
the diverse sources from which sounds are generated. On
the other hand, the audio receiver, namely the human audi-
tory system, has been extensively studied and some of the
results are applicable to audio coding. Of particular impor-
tance is interband masking, an effect in which one signal
is rendered less audible by another signal in close spectral
or temporal proximity. By properly shaping the quantiza-
tion noise which is introduced by the coding process, it is
possible to code at a lower rate for equivalent subjective

fidelity.

3.2. Masking Thresholds and Window Design

The application of quantization-noise shaping requires the
computation of a signal-adaptive masking curve. This over-
all masking curve is formed by taking a weighted sum of the
masking thresholds, each of which is based on the energy
in its corresponding critical band. These masking thresh-
olds, therefore, determine the necessary stop-band attenu-
ation for the analysis filters in each subband channel. We
know from [3] that the magnitude frequency response of the
analysis filters can be approximately given by the magni-
tude frequency response of the analysis window modulated
to the appropriate frequency. It follows that shaping the
stop-band attenuation for the analysis filters is equivalent
to shaping the stop-band attenuation of the analysis win-
dows.

One method of achieving the stop-band attenuation nec-
essary for the masking-curve computation is to increase the
number of degrees of freedom by lengthening the analysis
window. If M, the number of subband channels, is held
constant, this approach increases K, the overlapping fac-
tor, a side effect that would be acceptable in the absence of
quantization noise. In the presence of quantization noise,
however, audio coding schemes often suffer from pre-echo
artifacts when the signal contains sharp transients. This
artifact is exacerbated if K is large. It is, therefore, to our
advantage to keep the value of K relatively small. In light
of this, we propose that biorthogonality be used to provide
enough degrees of freedom to achieve the necessary stop-
band attenuation.

3.3. Orthogonal vs. Biorthogonal for K = 1

Consider the design of the analysis window for the case of
K = 1. In the orthogonal case, the design is subject to
the M/2 constraints given in (5). This greatly restricts the
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Figure 2: Comparison of a window used for the orthogonal lapped transform and a window used for the biorthogonal lapped
transform in relation to the masking threshold of a signal at 250 Hz.

ability of the designer to choose an appropriate window.
One popular choice that satisfies the perfect-reconstruction
requirement is the raised-cosine or Hanning window. In fig-
ure 2(a), we have shown the magnitude frequency response
of the window modulated to 250 Hz in relation to a mask-
ing threshold derived from a signal at the same frequency.
For this, we have assumed a standard sampling rate of 48
kHz so the 512-point window has a duration of 10.7 msec.
The masking threshold is computed based on [7]. Note that
in the bands close to the signal frequency the sidelobes of
the window are sufficiently high to invalidate subsequent
masking-curve calculations. Unfortunately, the nonlinear
nature of the equations in (5) makes it difficult for design-
ers to improve upon the analysis window by performing the
usual mainlobe-width-versus-sidelobe-attenuation tradeoff.

This situation is rectified in the biorthogonal case. The
increase in the number of degrees of freedom to M means
that the designer can choose any appropriate symmetric
window for the analysis filter. For example, it is possible
to use the Kaiser window in which the tradeoff between
mainlobe width and sidelobe attenuation is controlled by a
single parameter 3. The relation between the magnitude
frequency response of the modulated Kaiser window with
f = 12 and the corresponding masking threshold is shown
in figure 2(b).

4. CONCLUSION

In this paper, we have demonstrated, for two special cases,
that the incorporation of biorthogonality into the ELT pro-
vides an increase of M/2 degrees of freedom in our choice
of windows. The increase, while modest, is nevertheless sig-
nificant, especially for lower values of K. In particular, the
added flexibility is important for the proper implementation
of psychoacoustic modeling in audio compression schemes.
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