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ABSTRACT

The linear intersection (LI) estimator, a closed-
form method for the localization of source positions
given only the sensor array time-delay estimate infor-
mation, is presented. The array is constrained to be
composed of 4-element sub-arrays configured in 2 cen-
tered orthogonal pairs. A bearing line in 3-space is
estimated from each sub-array and potential source lo-
cations are found via closest intersection of bearing line
pairs. The final location estimate is determined by
a probabilistic weighting of these potential locations.
The LI estimator is shown 'to be robust and accurate,
to closely model the ML estimator, and to outperform a
representative algorithm. The computational complex-
ity of the LI estimator is suitable for use in real-time
microphone-array applications.

1. INTRODUCTION

Microphone-array systems can be used to determine
the positions of active talkers and can be electronically
steered to provide spatially-selective speech acquisition.
Since it is steered electronically, a microphone-array’s
directivity pattern can be updated rapidly to follow
a moving talker or to switch between several alter-
nating or simultaneous talkers. These features make
microphone-arrays an attractive alternative to single
microphone systems for hands-free speech acquisition,
especially those involving multiple or moving sources.

The ability of microphone-array systems to deter-
mine talker location makes them attractive for use in
multimedia teleconferencing systems where the loca-
tion of the talker can be used not only for steering the
directivity of the microphone-array, but also for point-
ing cameras or determining binaural cues for stereo
imaging.

In microphone-array systems a directly observable
signal characteristic is inter-sensor delay. Extensive lit-
erature exists on the topic of inter-sensor delay estima-
tion and subsequent source location [1]. To achieve

This work partially funded by DARPA/NSF Grant IRI-
8901882, and NSF grants MIP-9314625 and MIP-9120843

3019

a high update rate in real-time situations, a practi-
cal source-location procedure must be computationally
inexpensive. This requirement favors closed-form solu-
tions [2, 3, 4, 5, 6] over search-based methods.

2. SOURCE LOCALIZATION PROBLEM

The locationing problem addressed here may be stated
as follows. There are N pairs of sensors m;; and m;, for
i € [1, N]. The ordered triplet (x,y,z) of spatial coordi-
nates for the sensors will be denoted by m;; and m;s,
respectively. For each sensor pair, a time-difference of
arrival (TDOA) estimate, 7;, for a signal source located
at s is available. The true TDOA associated with a
source, s, and the i*? sensor-pair is given by:

_ s —my1| = |s — myy|
- ¢

T({m;1, m;a},s) (1)
where ¢ is the speed of propagation in the medium.
In practice, 7; is corrupted by noise and in general,
7 # T({my1,m;2},s). In addition to the =, a vari-
ance estimate, 62, associated with each TDOA is also
assumed to be available as a byproduct of the time-
delay estimation procedure. Given these N sensor-pair,
TDOA-estimate combinations:

{mu,mig},r,-,a,? fori=1,...,N
it 1s desired to estimate the source location s.

If the TDOA estimates are assumed to be indepen-
dently corrupted by additive Gaussian noise, the Max-
imum Likelihood (ML) estimate §prr is given by the
least-squares estimate [7]:

N
- N 1
sMLzarngm(E ?‘?-[Ti—T({mix,miz},S)]'z)

i=1
(2)
However, since 7 ({m;1,m;2},s) is a non-linear func-
tion of s, this error criteria is nonconvex and the solu-
tion of (2) requires burdensome, and frequently prob-
lematic, numerical search methods. For these reasons,
it is worthwhile to develop a closed-form source-location
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Figure 1: Quadruple sensor arrangement and local
Cartesian coordinate system

estimator with performance features comparable to those

of the less tractable ML estimate. The locationing pro-
cedure described below, termed the linear intersection
(LI) method, satisfies both these conditions.

3. LI SOURCE LOCALIZATION
ALGORITHM

For a specific sensor pair {m;;, m;;} and their associ-
ated TDOA estimate, 7;, the locus of potential source
locations in 3-space forms one-half of a hyperboloid of
two sheets. This hyperboloid is centered about the
midpoint of m;; and m;; aid has the directed line seg-
ment T;m;; as its axis of symmetry. For sources with
a large source-range to sensor-separation ratio, the hy-
perboloid may be well-approximated by the cone with
vertex at the sensors’ midpoint, having T; m;; as a
symmetry axis, and a constant direction angle relative
to this axis. The direction angle, 8;, for a sensor-pair,
TDOA-estimate combination is given by:

T ) (3)

- . . ) = ~1

6; 9({mtl: mzZ}a Tx) Ccos <'mi1 _ mi?l

Now consider two pairs of sensors {m;;,mj;} and
{mj3, m;4}, where j is used to index the sets of sen-
sor quadruples, along with their associated TDOA es-
timates, 7512 and 7ja4, respectively. The sensors’ place-
ment positions are constrained to lie on the midpoints
of a rectangle. A local Cartesian coordinate system is
established with unit vectors defined asX; = %ﬁ%ﬁ:—z[
¥ = F‘—;'—:%JJ—‘[, and Zj = X; x ¥; with the origin at
the common midpoint of the two pairs, denoted by m;.
This geometry is depicted in Figure 1. The first sensor-
pair TDOA-estimate approximately determines a cone
with constant direction angle, aj, relative to the Xj
axis, as given by (3). The second specifies a cone with
constant direction angle, §;, relative to the y; axis.
Each has a vertex at the local origin. If the potential
source location is restricted to the positive-z half-space,
the locus of potential source points common to these

two cones is a line in 3-space. The remaining direction
angle, v;, may be calculated from the identity

2 2 2.
cos®a; +cos® ff; +cos”y; =1

with 0 < v; < % and the line may be expressed in

terms of the local coordinate system by the parametric
equation

z; oS uj
/ — . — . . — . ! 3
Vi=]wy | =r;| cosBj | =r;a;
2j COs 75

where r; is the range of a point on the line from the
local origin at m; and a’; is the vector of direction
cosines. The line I’; may then be expressed in terms of
the global Cartesian coordinate system via the appro-
priate translation and rotation. Namely,

_ . . '~ .
l; = r;R;a’; + m;

where R; is the 3 x 3 rotation matrix from the j** local
coordinate system to the global coordinate system. Al-
ternatively, if a; represents the rotated direction cosine
vector then
l; =rja; +m;
Given M sets of sensor quadruples and their corre-
sponding bearing lines

ljzrjaj+mj forj=1,.... M

the problem of estimating a specific source location re-
mains. The approach taken here will be to calculate
a number of potential source locations from the points
of closest intersection for all pairs of bearing lines and
use a weighted average of these locations to generate a
final source-location estimate. More specifically, given
two such bearing lines

; = rja;+m;

I, = rrap +my (4)

the shortest distance between the lines 1s measured
along a line parallel to their common normal and is
given by:

d; = 1@ x 2) - (m; — my)|
’ la; x ax|

Accordingly, the point on I; with closest intersection
to 1 (denoted by s;i) and the point on 1; with closest
intersection to1; (denoted by si;) may be found by first
solving for the local ranges, r; and r¢, and substituting
these values into (4). The local ranges are found via
solution of the overconstrained matrix equation:

a; | —ax ][:i J = [ mp —mj +dje - (2 x a) ]
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Each of the potential source locations is weighted
based upon its probability conditioned on the observed
set of 2M sensor-pair, TDOA-estimate combinations.
The TDOA estimates are assumed to be normal dis-
tributions with mean given by the estimate itself. The
weight associated with the potential source location,
Sjk, is calculated from:

M
Wir = HP(T({mu,mzz},Sjk),7‘112,6;"12)
=1
P(T({my3, ms},s;i), naa, 0’1234) (5)

where P(z,m,0?) is the value of a Gaussian distribu-
tion with mean m and variance o2 evaluated at z, i.e.

EIWECTLS

The final location estimate, which will be referred as
the linear intersection estimate (8rr), is then calcu-
lated as the weighted average of the potential source
locations:

—(z - m)2

P(z,m,o0?) =

M M
Wijksje
. JS1k=Lkzj
SLI = =37 (6)
Z: 'Z Wik
J=1k=1,k#j

4. LOCATION ESTIMATOR EVALUATION

The ML estimate (2) is found via minimization of the
sum-squared error of the differences between the ob-
served TDOA and those of the hypothesized source.
Because this error criterion is non-linear, (2) does not
have a closed-form solution. For the location estimator
presented here and those in the literature, the require-
ment of a closed-form solution necessitates the devel-
opment of alternative error criteria. These alternative
error criteria take several forms and vary in the degree
to which they approximate the ML error criteria and
perform in comparison to the ML estimator. A discus-
sion of several of these closed-form estimators as well
as a relative performance evaluation is presented in [6].
Smith and Abel found their estimation procedure, a
linear least-squares approach termed the spherical in-
terpolation (SI) method, to exhibit an RMS error su-
perior to that of the estimators presented in [4] and
[5].

As a means of evaluating the LI location estimator,
the statistical characteristics of the LI and SI localiza-
tion methods were compared through a series of Monte
Carlo simulations modeled after those conducted in [6].
The experimental set-up, a nine-sensor orthogonal ar-
ray with half-meter spacings and a source located at
a range of 5 meters with equal direction angles, is de-
picted in Figure 2. The true TDOA values (1) were

|

(:5,0,.5) _-"Source
(2.89,2.89,2.89)

range= 5
angles=< 54.7°,54.7°,54.7° >

.5,0,0)

(0,0,-.5) (.5,0,-.5)
Array

Figure 2: Experimental Set-Up:
(distances in meters)

nine-element array

corrupted by additive white Gaussian noise. 100 trials
were performed at each of 11 noise levels ranging from
a standard deviation the equivalent of 10~3 meters to
10! meters when scaled by the propagation speed of
sound in air (c & 342°2). The LI method partitioned
the array into 4 square sensor quadruples and required
the evaluation of 8 TDOA estimates, one for each diag-
onal sensor-pair. The SI method required that all the
TDOA values be relative to a reference sensor. The
sensor at the origin was chosen for this purpose and
the TDOA for each of the remaining 8 sensors relative
to the reference were calculated. In addition to cal-
culating the LI and SI estimates, the ML estimate (2)
was computed via a quasi-Newton search method with
the initial guess set equal to the true location (clearly
this is not a practical algorithm since it requires prior
knowledge of the actual source location).

Figures 3-5 summarize the results of these simula-
tions. Figure 3 plots the sample bias for the estimated
source bearing and range for each of the estimation
methods as a function of the level of noise added to the
true TDOA values. While each of the methods exhibits
some degree of bias in the noisier trials, the situation is
most extreme for the SI method. This tendency for the
SI method to consistently bias its estimates towards the
origin was noted by the authors of {6]. The LI method
performs comparably to the ML estimate for all but the
most extreme noise conditions. Figure 4 plots the sam-
ple standard deviations. For the standard deviation of
the bearing estimates, a trend similar to the bearing
bias is observed. The SI method’s performance decays
rapidly for noise levels above 10~2 meters. However,
in terms of the range, each of the closed form estima-
tors displays a smaller variance than the ML estimator
at the higher noise conditions. This is a consequence
of the estimator biases observed previously. Finally,
Figure 5 shows the root-mean-square errors (RMSE).
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Figure 4: Location estimator sample o

Once again, the LI method closely tracks the ML esti-
mator in all but the most extreme condition while the
SI method exhibits a marked performance decrease in
both bearing and range for moderate and large noise
levels.

Simulations performed over a broad range of source
positions exhibit trends similar to those in Figures 3-5.
The LI estimator is consistently less sensitive to noise
conditions and possesses a significantly smaller bias in
both its range and bearing estimates when compared
to the SI estimator.

5. DISCUSSION

A closed-form method for the localization of source
positions given only TDOA information has been pre-
sented. It was shown to be a robust and accurate esti-
mator, closely modeling the ML estimator, and clearly
outperforming a representative algorithm.

From an implementation standpoint, the constraint
that the array be composed of rectangular 4-element
sub-arrays is not problematic for typical room-oriented
microphone-array applications. The linear intersection
method has proven to be an effective source localiza-
tion procedure when used in conjunction with a single
10-element planar-array in our laboratory and is easily
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Figure 5: Location estimator root mean square error

extendible to real-time applications using more com-
plex sensor arrangements. It is an advantage of the LI
method that localization in 3-space can be performed
with a 2-dimensional array. Also, since the LI method
does not require the estimation of delays between sen-
sors other than those in the local sub-array, the sub-
arrays can be placed far apart and delay-estimation
processing can be performed locally.
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