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ABSTRACT

We describe a new class of algorithms for active noise con-
trol (ANC) for use in environments in which impulsive noise
is present. The well known filtered-X and filtered-U ANC
algorithms are designed to minimize the variance of a mea-
sured error signal. For impulsive noise, which can be mod-
eled using non-Gaussian stable processes, these standard
approaches are not appropriate since the second order mo-
ments do not exist. We propose a new class of adaptive
algorithms for ANC that are based on the minimization of
a fractional lower order moment, p < 2. By studying the
effect of p on the convergence behavior of adaptive algo-
rithms, we observe that superior performance is obtained
by choosing p = a where ¢ < 2 is a parameter reflecting
the degree of impulsiveness of the noise. Applications of
this approach to noise cancellation in a duct are presented.

1. INTRODUCTION

In recent years, many systems have been proposed for ac-
tive cancellation of acoustic noise. The most successful of
these are feedforward systems in which a reference signal,
measured using a reference sensor near the noise source, is
fed forward via an adaptive filter to a secondary source so
as to cancel the unwanted noise. The coefficients of the
adaptive filter are chosen to minimize some function of the
residual noise as measured at an error sensor. Almost all
of the current methods for adapting the coeflicients of the
adaptive filter have been based on minimization of the vari-
ance of the residual noise at the error sensor. For example,
the filtered-X LMS algorithm for FIR filters [2, 3], and the
filtered-U RLMS algorithm for IIR filters [4] both attempt
to minimize the mean squared residual error.

There is however an important class of random pro-
cesses known as stable distributions, with parameter a (0 <
a < 2), for which the second moment does not exist for any
a < 2 (a stable distribution reduces to a Gaussian, when
a = 2). Compared with the Gaussian distribution, the sta-
ble distributions for a < 2 exhibit heavier tails, so that
outliers occur more frequently than in Gaussian processes.
The importance of the stable distributions is that they are
able to model a range of non-Gaussian signals including im-
pulsive phenomena. The smaller a, the heavier the tails of
the density function, and thus the more impulsive the pro-
cess. Since the variance does not exist for these processes,
it makes little sense to use traditional second order moment
based adaptive algorithms to cancel noise of this type. In
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this paper we propose a new class of algorithms for active
noise control for use in environments where impulsive noise
is present. In place of the variance which is minimized in the
standard algorithms, we minimize a fractional lower order
moment (p < «) that does exist.

Single channel algorithms are presented for applications
to plane waves in a duct; however, they are directly ex-
tendable to multichannel problems for cancellation of more
complex acoustic fields.

2. FRACTIONAL LOWER ORDER MOMENT
BASED ADAPTIVE ALGORITHMS

A comprehensive tutorial on signal processing based on sta-
ble processes and fractional lower order moments is given
in [1]. Here, we restrict our attention to the special class of
symmetric stable distributions, called symmetric a-stable
or SaS, with 1 < a < 2 and characteristic function:

#(t) = exp{jat — v(t|*} (1)

where ¥ > 0 is the dispersion and a is the location parame-
ter. For an Sa.S process with a < 2, only moments of order
less than « are finite. Since in these cases the variance
is not finite, the minimum mean squared error criterion is
an inappropriate objective for adaptive filtering. Instead,
the minimum dispersion criterion serves as a measure of
optimality in stable signal processing. The dispersion is a
parameter of the SaS process which plays a similar role to
the variance in the Gaussian process. It is shown in [1] that
minimizing dispersion is equivalent to minimizing a frac-
tional lower order moment of the residual error: Ele(n)|P
for p < a. Although we can in theory use any fractional
lower order moment with p < «, the convergence behav-
ior of adaptive algorithms based on lower order moments
varies considerably with p. Here, we illustrate this with a
simple adaptive experiment using a first-order AR process.
Consider an ii.d. stable process, {v(n)}, driving an AR
model:

u(n) = au(n — 1) + v(n) (2)
where a = 0.99 is the parameter of the process. To esti-
mate the parameter a from the AR process {u(n)}, we im-
plemented (i) a theoretical steepest descent algorithm, and
(ii) a stochastic LMP (least mean P-norm) algorithm [1].

For both algorithms, the objective is to solve the opti-
mization problem:

W(n) = argming (g E[le(n)|?] 3)
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Figure 1: Convergence behavior of the steepest descent al-
gorithm for minimization of the p'* moment of the residual
error for @ = 1.5 and various values of p.

where

e(n) = u(n) — ®(n)u(n — 1), (4)
for p < a. The theoretical steepest descent algorithm for
optimizing this function has the form:

B(n +1) = B(n) — 4Va(m Elle(n)fF] (5)
= @(n)+ upElu(n — Vsign(e(m)le(m)P™']  (6)
() + ppld(n)| N

a+1

L f=ry
sign(w(n))v.C(p, a)'ye(;)
where
2PHIT(BEI(-2)
a/FT(-B)
Yv
1—|af*

w(n) = a-—1w(n), C(pa)=

Ye(n) lw(n)la'yu + Yoy Yu=
Since the true pth moment is unknown, it can be ap-
proximated using an instantaneous estimate:

Efle(n)[*] = le(n)? (7)
resulting in the stochastic LMP algorithm [1]:
®(n + 1) = @(n) + pupu(n — 1)|e(n)|P  sign(e(n)). (8)

This is a generalization of the LMS algorithm from p = 2
top < 2.

The steepest descent and LMP algorithms were imple-
mented for the 1st order AR process described above. We
then investigated the behavior of these methods for various
values of p and a. Figure 1 shows the convergence of steep-
est descent for o = 1.5 for several values of p. In each case,
the step-size parameter was chosen as the largest constant
value such that the estimated parameter did not overshoot
the true parameter by more than 1%. This typical behavior
indicates that choosing p as close as possible to « results in
the fastest convergence. A natural upper bound is p <
since the moment does not exist for larger values.

Similar behavior was observed for the LMP algorithm.
In this case 50 realizations of the AR SaS process were gen-
erated and ensemble statistics computed. Shown in Figure
2 are curves of the asymptotic mean absolute residual error

(E)w(n = co)—a|) versus convergence speed for various step
sizes and for three different values of p. Again it is clear that
using p close to a results in an optimal trade-off between
residual error and convergence rate. For the LMP methods,
it is possible to use a value of p > a. However our experi-
ence is that in this case the algorithms eventually become
unstable for convergence rates in the range shown. Since
active noise control systems typically run continuously, it is
very important that the adaptive filters remain stable, and
hence only values of p < a are used in the following.

3. FRACTIONAL LOWER ORDER MOMENT
BASED ACTIVE NOISE CONTROL
ALGORITHMS

In the case of active noise control, we adapt the filter co-
efficients to minimize the dispersion of the residual error
as measured at an error sensor. Consider an FIR based
ANC system with an input consisting of a stationary SaS
noise {u(n)}. The noise propagates through the plant trans-
fer function producing the signal {d(n)} at the location at
which the filtered reference signal {y(n)} is introduced. The
residual error e(n) = d(n) + y(n) is measured after passing
through a secondary plant transfer function {co,ec1,...,

cn-1}, le. ex(n) = z;:&l cje(n — j). We assume here
that the transfer function {c;} has been identified off line.
The problem is then to choose the tap weights of the feed-
forward FIR filter {wo, w1,..., wsr—1} such that the filter
output matches the desired plant noise {d(n)} as closely as
possible in the sense that the pth moment of the error signal
is minimized, for some 0 < p < a. The pth moment is given

by:

J = ElemP)=E( ) cie(n =)
N—-1 ” M-1
= B> cildin=j5)+ Y weuln—3-k)P)

We propose the following stochastic gradient method to up-
date the coefficients:

Wk(n +1) = dx(n) (9)
N-—1
~plea(n)P~" sign(ez(n)) _Z ciu(n—j —k)

for 0 < k < M — 1, where i > 0 is the step size. This is an
LMP generalization of the conventional filtered-X algorithm
and will be referred to as LMP-filtered-X. It reduces to
filtered-X when p = 2.

The minimum dispersion approach can also be applied
when IIR filters are used to model feedback in ANC sys-
tems. Erikson [4] extended the filtered-X concept from
FIR to IIR adaptive filters using Feintuch’s recursive LMS
(RLMS) algorithm. This is commonly referred to as the
filtered-U algorithm. Replacing the minimum variance cri-
terion of RLMS with minimization of the p*® moment, and
applying this to the observed error e;(n), results in an
LMP extension of the filtered-U algorithm. We refer to
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Figure 2: Convergence behavior of the stochastic LMP al-
gorithm for various values of p. Each curve represents a
different value of p. The points on each curve correspond
to different step sizes and show the coefficient error norm
E[|@ — af], after convergence, vs. the number of iterations
to convergence (defined as the iteration corresponding to
90% of the final residual).

this method as LMP-filtered-U. Specifically, the reference
signal is filtered with an IIR filter as follows:

M-1 L R
y(n) =Y au(n—k) + > byn—k)  (10)

where the IIR coefficients, {ax} and {bx}, are updated using

ax(n + 1) = ak(n) — pplea(n)|P " sign(ez(n))
xSy cun-j-k) 0<k<M-1
j
Bk(n +1) = Bk(n) - pp[ez(n)lp—lsign(ez(n))
XZij(n—j—k—l) 1<k<L

This reduces to the standard filtered-U algorithm for p = 2.

The adaptive LMP methods defined above for ANC
were simulated in Matlab and also implemented in real time
on a TMS320C30 DSP and applied to noise cancellation in
an experimental acoustical duct. In order to compare con-
vergence behavior, in both real time experiments and com-
puter simulations we adjusted the adaptive step size so that

both the conventional (p = 2) and new (p < 2} algorithms
converge to similar levels of residual noise. Overall we found
that with appropriately chosen step sizes and for relatively
small values of @ {corresponding to highly impulsive noise)
our new algorithms achieved extremely low residual noise
levels. These low levels could not be obtained with con-
ventional algorithms, regardless of the step size used. As
a is increased, the performance of the standard algorithms
improved, but generally exhibited slower convergence than
the LMP methods for similar levels of residual error.

In Figure 3, we show samples of our computer simu-
lation results for the LMP-filtered-X and LMP-filtered-U
algorithms. This figure compares the convergence behav-
ior of both algorithms with the corresponding standard
ANC algorithms. The two filtered-X algorithms (p = 2 and
p = 1.19) were tested for stable noise with o = 1.2. Conver-
gence for p = 1.19 is clearly much faster than for p = 2. The
two filtered-U algorithms (p = 2 and p = 1.49) were tested
for stable noise with o = 1.5. Again, convergence behavior
for p = 1.49 is much faster than for p = 2. In Figure 4, we
show the error signal collected for a real time active noise
control experiment performed in an acoustic duct, where
the noise was generated by passing a pseudo-random i.i.d.
SaS sequence (o = 1.5) through a 16 bit DAC. The plots
show the transient behavior of the residual noise for LMP-
filtered-U with p = 1.4 and p = 2, respectively. In this
experiment, we use 200 forward coefficients and 150 feed-
back coefficients. The secondary path was identified using
off line noise injection with a 250-tap FIR filter. The sam-
pling frequency was 4 KHZ.

4, CONCLUSION

We conclude that in environments with impulsive noise
that can be well modeled by a SaS distribution, active
noise control algorithms based on fractional lower order mo-
ments offer the potential for significant improvements over
standard algorithms. Our Monte-Carlo simulations indi-
cate that accurate knowledge of a is important for opti-
mal performance. Consequently, it would be appropriate
to incorporate on-line estimation of o as part of the adap-
tive algorithm. The results presented here are preliminary
- further theoretical, simulation and experimental studies
are required to evaluate the potential and limitations of the
LMP methods for active noise control
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Figure 3: Sample results from Matlab simulations: The plots show the convergence history of the ensemble average of the
absolute error as measured by the error sensor. The ensemble average is computed across 10 realizations. The left column
shows results for an FIR system for a = 1.2 with p = 1.19 (upper) and p = 2 (lower). The right column is for the IIR system
with @ = 1.5 for p = 1.49 (upper) and p = 2 (lower).
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Figure 4: Sample results from real time experiments: The plots illustrate the transient behavior of residual errors when
applying the LMP-filtered-U algorithm for p = 1.4 (upper) and p = 2 (lower). The injected impulsive noise was generated
by passing SaS noise, a = 1.5, through a 16-bit DAC.
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