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ABSTRACT

This paper presents an application of artificial neural
networks to the reliable detection of misfires in automotive
engines. By government regulations, automobiles are required
to be equipped with instrumentation to detect eagine misfires
and to alert the driver whenever the misfire rate bas the potential
to affect the health of emission control systems. A relevant
model for the powertrain dynamics is developed in this paper as
well as an explanation of the instrumentation. The basis for
using a neural network to detect these misfires is explained and
experimental system performance data (including error rates) are
given. It is shown in this paper that the present method has the
potential to meet the government mandated requirements.

INTRODUCTION

This paper presents a method having the potential to meet
one of the more challenging new governmental regulations
facing the automotive industry. The California Air Resources
Board (CARB), an agency of the state government, has invoked
new rules for passenger cars sold in the state that are known as
On-Board Diagnostics I (OBDII). These rules are generally
intended to monitor (in real time) the performance of the exhaust
emission control system. Included in the OBDII rules is the
requirement to detect engine misfires due, e.g., to improper
fueling or ignition failure. Misfire is a condition in which there
is no combustion of the fuel/air mixture during the power stroke
of the engine (in which combustion normally occurs).
Whenever the rate of misfire exceeds a mandated threshold
(such that emissions are adversely affected), the driver is to be
alerted such that corrective repairs can be undertaken.

The present paper presents a novel method for detecting
each single misfire based upon an application of digital signai
processing techniques to signals coming from a seasor that is
part of the normal electronic engine control system. This work
is an outgrowth of research conducted at the Vehicular
Electronics Lab (VEL) at the University of Michigan (UM) on
dynamic modeling of engine/drivetrain (powu' train) dynamics.
This paper briefly explams the problem in terms of power train
dynamics, summarizes the theory of the method and presents
results of actual experimental road test measurements.

POWER TRAIN CONFIGURATION AND MODEL
The present method of detecting misfires is based upon the
influence of misfire on the torque and power generated by the
engine. Furthermore, this method involves the dynamic
response of the powertrain to misfire related torque generation.
The power train for the present method consists of a
multicylinder gasoline fueled, reciprocating engine coupled to a
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transmission and associated driveline or transaxle and tire
dynamics. Modem aotomotive engines are of the 4-stroke/cycle
variety requiring two complete revolutions of the crankshaft for
each cylinder to contribute a power stroke.

The torque produced by combustion of fuel and air is
pulsating owing to the reciprocating nature of the engine (as
opposed to continuous in a gas turbine). For an ideal engine at
steady state, the torque pulsations of each cylinder would be
identical. A misfire would correspond to a missing torque pulse
for the affected cylinder. A measurement or estimate of torque
would reveal the misfire rather simply. Furthermore, torque
generation, even at steady state, is not uniform. Rather, the
torque waveform is a random process (superposed upon the
mean steady-state torque) owing to variability of fueling and the

On the other hand, the random torque fluctuations in a
weil tuned engine are small compared to misfire. Consequently,
the misfire condition can be identified through suitable statistical
processing as explained later in this paper.

Furthermore, although direct measurement of torque is not
feasible, misfires can be detected through noncontacting
measurements of crankshaft angular speed. The relationship
between the torque misfire signature and crankshaft angular
speed can be explained with the linear, approximate equivalent
mcmludovelopedandaplnmdin[l] to [3] shown in Fig. 1.
This model, though simplified, is sufficiently robust to explain
the present method and to yield a practical functioning misfire
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Fig. 1. Equivalent Circuit Model for IC Engine.
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Within the validity of the equivalent circuit of Fig. 1, it is
evident that angular speeds ®, snd can be represented as the
response of a linear dynamic system to an input T, consisting of
the torque applied at the crankshaft This relationship can, of
course, be expressed in the frequency domain

o, (2xf) = <, G2x) Hj2)
where H is the appropriate frequency response for the system.

Torque fluctuations due to misfire resuit in coresponding

fluctuations in angular speed. Noncontacting measurements of
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crankshaft angular speed, which are straightforward, provide the
basis of our method of detecting misfires.

It has been shown in [4] that the dynamic equations for the
system of Fig. 1 can also be written with crankshaft angle 8 as
the independent variable. Furthermore the discrete time
representation in crankshaft angle is given by

=T ((ek)
O =0, (ek)
where 0, = %

The corresponding frequency domain representation is given by
the DFT or s%me equivalent transformation (5]

Iy
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where X is the number of uniformly spaced samples in two

revolutions of the crankshaft and where

Wy=exp(j D.
For convenience, we denote the magnitude and phase of AP’ Mp

and ¢ p’ respectively.

For misfire detection in an N cylinder engine, only the
fundamental and Nth harmonic (ie., p = 1 and p = N) are
required as explained in [S] and as demonstrated in our
experimental road tests.

For misfire detection, it is advantageous to compute the
spectral components recursively over successive intervals of
length K. We term this recursive computation a sliding window
(of length K) algorithm. We denote the shift in the window
position by index j(j=1,2,.. +). The jth computation of A’ is
denoted Ap(])

E=12...XK

K
A’(’)zg‘%’-‘ W julZ...

The recursive algorithm is given by W‘*
A(+1)= A’(j.).v 173 o +a p Wk

As each new data sample comes in, a new spectral component is
computed with only two complex products. There are X such
complex products for each engine cycle (i.e., two crankshaft
revolutions).

Typically in any practical application, K is determined by
the sensor configuration used in the measurement of crankshaft
angular position. However, it is desirable for 6V SKSI2N
for an N cylinder engine to have adequate sampling and yet
avoid having excessively high computstional burden.

It is perhaps instructive to examine samples of the
crankshaft angular speed variation signal such as are depicted in
Fig. 2. This figure depicts the instantancous crankshaft angular
speed signal for a pair of complete engine cycles of a 5-cylinder
inline engine. Figure 2(top) gives aXr) for a normal combustion
cycle and Fig. 2(bottom) gives c(?) for a cycle in which cylinder
No. 2 has misfired.
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Fig.3
This influence of misfire on the :pectmmAPisinnstrated
in Fig. 3 for a specific example operating condition and vehicle
configuration. This figure A:howl the magnitude Mx(’) of Al(,)

(e M, =|A, . Tn this sample, misfire events are indicated by

amplitudes of the order of 7000 to 8000. The corresponding
magnitude for engine cycles is a random process having
amplitude less than about 2000. The samples in Fig. 3 happen
to be taken with the car on the road driving in first gear at 2000
RPM but these details are unimportant to the preseat illustration.

The random fluctuations in Ml(i) are a characteristic of
normal combustion in automotive engines. These fluctuations
constitute the 'noise’ environment in which the misfire 'signal’ is
to be detected. Although the signal/noise for the sampie of
Fig. 3 appears 1o be relatively high, there are other operating
conditions having a lower signal/noise.

The final step in detecting misfire is the application of a
decision algorithm. In principle, a simple threshold decision
algorithm could be applied to the data M, () to detect misfires.

In practice, the relationship between M (j) and torque

varies significantly with operating conditions. Moreover, the
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signal/noise for many operating conditions is lower than that for
the sample of Fig. 3.

Our studies ([2] and {5]) have shown that misfire detection
system is enhanced if the decision algorithm adapts
to operating conditions. One of the methods of adapting the
decision algorithm to operating condition has been through the
use of a neural network. The steps involved in this misfire
detection system are depicted in Fig. 4.

operating
condition
variables
W
and sample j':" o 2o | o decision o
me NN
Fig. 4.

The inputs to the neural network, in general, should
include certain spectral components as well as variables that are
indicative of operating conditions. Of course, in the interest of
operating the decision algorithm in real time, the number of
inputs should be kept as small as possible.

The final component in the system of Fig. 4 is a threshold
decision block. This decision algorithm is a threshold algorithm
applied to the neural network otput NV))

NN(j)< N; =>nomnal
NNG)> Np = misfire.

The performance of any threshold decision algorithm is
expressed in terms of its error rates. There are, of course, two
types of error: 1) missed detection (md) and 2) false alamm (fa).
We evaluate the performance of our misfire detection by the
eorrates p_, andp _, respectively, in this paper.

Our studies ([2] and [5]) have shown that the important
spectral components are M, (j) and My(j) (Where N = pumber of
cylinders). The operating condition is, perhaps, best represented
by the engine RPM, and load and by the transmission gear ratio.
Engineloadisrepresenwdbyeithuthcmusﬂowmofﬁr
into the engine (MAF) or the intake manifold absolute pressure
(MAP) (although other choices are available in certain car
models).

It should be emphasized that the inclusion of gear ratio is
merely an option that may prove to be cost effective on cars
equipped with automatic transmissions. Our experience to date
has shown that it is not required as a neural network on the cars
we have studied to date.

For the work reported in this paper, the neural network
consisted of three layers. The input layer has three input nodes
for M, (/) RPM(j) and MAF(j). The hiddea layer has six nodes
and the output layer has one node. The neural networks that we
bave evaluated are relatively simple in that they are trained using
back propagation with Sigmoid functions from layer one to layer
two and linear functions from layer two to the output. The
neural network software was developed at the University of
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Michigan and is resident on a Sun Sparcstation 20/50
workstation with about 160M of memory.

An experimental evaluation of the UM misfire detection
system has been conducted by instrumenting various production
cars and operating the system in actual road tests. The
performance of the system in a variety of impiementations and
in a variety of different car makes and models have been
reported ([1], [2] and [5]). In this paper, we report the
performance of the system as described above for a passenger
car equipped with a 5-cylinder in-line engine and a manual

. L :,

The instrumentation that was installed in the test car has a

block diagram as depieted in Fig. 5.
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Fig. 5

~ Inthis figure, a variable reluctance sensor S is placed close
to the starter ring gear. Each of the approximately uniformiy
spaced starter ring gear teeth generates one cycle of output
voltage as that tooth passes the sensor axis. It has been shown
[1] that this sensor generates an output having a frequency that is
proportional to the instantaneous crankshaft angular speed.
Another magnetic wnwrs‘couplumgneﬁcallyto the camshaft
and gcmnﬁmin;tefmtormheomplewenginecyde.
Interface electronics consisting of a frequency to voitage
converter and a tunable band pass filter generates an analog of
crankshaft speed variation. Sampling electronics that are
triggered by pulses coming from sensor S generates the sequence
@, as described above.

This sequence, along with the once per engine cycle
signal, are received by a portable computer C. The computer
also generates an output signal for inducing misfire. This signal
is received by interface electronics D that is responsible for

terrupting the driver current to one of the fuel injectors. This
ci:cuiu'yintamptlbcunmﬁomthccrengineconmlunit
(ECU) that normally drives the fuel injectors. In this way, 2
misfire is induced under program control by preventing fuel
delivery to the appropriate cylinder. The program has the
capability of inducing a misfire in any given cylinder during any
given engine cycle. During development and testing, different
misfire sequences are required including random sequences.
The program has the capability to meet these requirements.

During experimental evaluation of the University of
Michigan misfire detection system, the computer creates data
files containing the data sequence ®,, the operating conditions
RPM(k) and MAF(k) and a binary signal indicating
misfire/normal combustion.

A 3-layer neural network having inputs A, (/), RPM()) and
MAF(j), a 6-node hiddea layer and a single output was trained.
The neural network was trained with data from normal engine



operation as well as data from a continuously misfiring cylinder.
Similar training data was collected for operation spanning the
eavelope of normal driving. )

Once the neural network was trained, it was tested with
the training set to evaluate its performance under training

conditions. The error rates for this evalustion were S 10~ for
all operating conditions.

The performance of the neural network was next evaluated
in actual road tests. These tests included continuous misfire for
conditions other than those for which the neural network was
trained. A more significant test than this, however, is the
evaluation of its performance under randomly induced,
intermittent misfires. This test is effectively accomplished by
inducing a misfire in each M cylinder firing events where M is
an integer that is not an integral multiple of N (i.e., the number
of cylinders). By proper choice of M, it is possible to induce a
misfire in a different cylinder for each misfire and to have s
number of normal combustion cycles between successive misfire
events.

Experimental evaluation of the present misfire detection
system has been conducted with several combinations of
intermittent misfire and for various steady operating conditions.
These tests were conducted by driving the car on the road,
inducing misfires and collecting data and then evaluating
misfires off-line.

When tested under these conditions, the neural network
has essentially perfect performance. Similar tests of continuous
misfire and normal combustion at speed-load points that are
different from the training set provide combined error rates
(L6~ Py, + Ppy) less about 10°°,

On the other hand, a more chailenging test than continuous
misfire at constant speed load is for transient driving conditions
with intermittent misfire. Such conditions represent a large
departure from training conditions and are representative of
practical driving conditions. Perhaps the most interesting test
involves driving from a stop and increasing speed, shifting at
suitable points as is normally done. It should be noted that
misfires are not induced during shifting transients since the
throttle is closed during this time and the fuel control strategy
shuts off fuel delivery.

A sample of the performance of the present misfire
detection system under the above driving conditions is illustrated
in Fig. 6. This figure shows the three inputs to the neural
network at the top, the neural output at the bottom and the
decision output in the next to the bottom. This test was
conducted under normal driving conditions including a startup
transient. A transmission shift can clearly be seea for (250 < j
$350). The induced misfires are identified in this figure by the
binary valued variable indicated by a dark line that is displaced
downward from 0 and 1 for clarity. The neural network has
correctly identified all of the induced misfires during this
sample.

Similar samples have been taken for a wide range of
steady driving conditions on a wide variety of roads. The emror
rates for these tests vary somewhat with operating condition.
However, for these cases as well as the steady operating
conditions, error rates < 10> have been measured.
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SUMMARY AND CONCLUSIONS

This paper has presented a method of detecting misfiring
in automotive engines. The method utilizes noncontacting
measurements of crankshaft angular speed. Samples of this
lpeodthummﬂfomly:pwedinmhhaﬂmguhrposiﬁon
from which various spectral components arc computed. A
design algorithm based upon a neural network identifies
individual misfires with error rates S 107, This method has the
potential to meet regulatory requirements for on-board misfire
detection. :
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