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ABSTRACT

This paper describes a new signal processing technique for
understanding the dynamics of time-varying signals in ve-
hicles: Hyperstate analysis. Vehicle noise and vibration are
examples of randomly-varying transient or non-stationary
signals that are not effectively analyzed with classical spec-
tral analysis techniques. By the use of nested Hidden Markov
Models, Hyperstate analysis explicitly identifies transient
and nonstationary behavior on many time scales for better
signal discrimination. It uses a probability-based frame-
work that allows for automated, objective classification of
noisy signals. The technique is applied to engine start-
ing sequences from different types of vehicles. This work
demonstrates that Hyperstate analysis discerns similarities
and differences in randomly-varying signals of this type, and
can perform effective automatic, objective classification and
signal decomposition for NVH (noise, vibration, and harsh-
ness) studies.

1. INTRODUCTION

This paper describes a new signal processing technique for
understanding the dynamics of time-varying signals in vehi-
cles: Hyperstate analysis. Starting sequences, blower motor
squeaks, instrument panel rattles, trasmission gear noise,
wiper motor noise, and power accessory noise are all exam-
ples of transient or non-stationary vehicle noise that cannot
be effectively analyzed with classical spectral analysis tech-
niques. Time-frequency representations of signals like the
Wigner-Ville and Choi-Williams distributions can provide
better information about time-varying signals, but can be
difficult to interpret for complex signals, and can explic-
itly describe variation for only a single time scale. Hy-
perstate analysis explicitly identifies dynamic features on
many time scales for better signal discrimination, and uses
a probability-based framework that allows for automated
objective classification of noisy signals. The probability
framework is more powerful than a simple pattern or tem-
plate matching approach because it accounts for random
variations in signatures from vehicle to vehicle and over
time.

A Hyperstate framework can serve as the core auto-
mated signal processing technique that is combined with
psychoacoustic analysis to replace subjective human jury
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evaluations with an objective, automated quality evalua-
tion. Hyperstate techniques can also be used to determine
the sensitivity of passengers to various sounds or vibrations
having complicated multi-level patterns and for the diagno-
sis of mechanical problems.

2. THEORETICAL BACKGROUND

Hyperstate analysis was developed to address the general
problem of classification and estimation of nonstationary
stochastic processes. The Hyperstate solution is given by
multiresolution stochastic modeling and associated nonlin-
ear optimal filtering. This new technique provides dynamic
models for discrete or symbolic data. Dynamics of the sig-
nal are modeled on mutliple time or space scales (resolu-
tions). At each scale, banks of discrete Hidden Markov
Models (HMM) are used to represent alternative process
dynamics. A hierarchy of nested HMMs results, and sta-
tistical likelihoods for these nested models are computed
rigorously using nonlinear filtering generalizations of the
Kalman filter described in [4].

The Hyperstate model structure is depicted in Figure 1.
Figure 1a shows an example of a standard discrete Markov
chain with four states (A k,B1,x, A2k, B2,x). The model
in the example permits transitions between any two states
every T; time units according to the transition probabili-
ties specified by the links. All of the dynamics in the model
take place on the same time scale. In many physical sys-
tems, however, different dynamics occur on different time
scales. For example, Figure la might actually be used to
represent a composite system formed from two linked sub-
models: one consisting of states (A;k, By,), the other of
states (A2, Bz,x). Transitions among states within a sub-
model may occur at the rate Tk, while transitions between
the sub-models occur at the (slower) rate Tx4+;. While the
model illustrated in Figure la does allow dynamics on both
the T} and T4, time scales to be described, it does so only
implicitly, and can lead to a much more complex, less de-
scriptive, and less computationally efficient model than is
required to describe the actual physical process.

Hyperstate models explicitly represent dynamics on mul-
tiple time scales, as illustrated in Figure 1b. The two
sub-models are now represented by two states, A1 x+1 and
B k41, in the Hyperstate hierarchy: A; 41 < (A1k, B1,k),
and Bl,k+1 <= (Az,k,Bz,k). Transitions between the sub-
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model states A; ;11 and B x+1 are explicitly represented as
occuring on the (longer) time scale Ty+1. These new states
are “hyperstates”, since they represent HMMs themselves,
not simple states. Hierarchies with arbitrary numbers of
layers of nested HMMs corresponding to arbitrary dynamic
resolutions (..., Tk, Tk+1,...) can be specified.

Markov Chain

Time scaies T;, Ty, ®)

Figure 1: (a) Conventional and (b) Hyperstate Markov
Models

The Hyperstate modeling and filtering technique has
several important features:

e Nonstationary, time-varying signatures are modeled

¢ Dynamics on multiple time scales are explicitly de-
scribed

* Rigorous probability measures are produced for sig-
nature discrimination

¢ A new computationally tractable algorithm results —
constraints on state transition paths yield a simpler
structure

o The filtering is optimal with respect to the modeled
hierarchy

o The explicit identification of system states at mul-
tiple resolutions provides added insight into signal
features — dynamics on different time scales are si-
multaneously modeled

o High-fidelity classification and estimation are achieved
by propagation of full likelihood information across
resolutions — no intermediate decision thresholds that
could result in information loss are used

¢ Rigorous data fusion involving numeric and symbolic
information at different resolutions can be performed.

Hyperstate modeling is a new general technique for rig-
orous multiresolution probabilistic modeling of nonlinear
stochastic processes using a hierarchy of discrete HMM mod-
els. Single-resolution HMM models have been widely used
in speech processing [2]. A much less general two-stage

hierarchy for word recognition has also been suggested [3].
Techniques for multiscale signal processing using linear mod-
els driven by Gaussian noise have also been proposed [1].

3. ALGORITHM DESCRIPTION

Processing starts at the 0-th Resolution by applying a
signal-to-symbol transform to provide a discrete label (sym-
bol) sequence and its associated likelihoods that character-
ize the stochastic process. These are then processed by a
hierarchy of nonlinear filters. Each filter’s dynamics are de-
termined by a distinct HMM. Multiple HMMs can exist at
each resolution level.

The algorithm hierarchy is described by resolutions i =
1,2,..., R, with corresponding time scales 1 = Ty < T} <
y-»+3< Tr-1. Resolution ¢ has models j = 1,2,...,J;. Us-
ing notations and conventions based on [4], the observed
output at time ¢ of a HMM model is y;’, and the corre-
sponding hidden state variable is z;?. ®7 and H* are the
state-transition and state-to-output observation matrices of
HMM model j at resolution i. The (m,n) entry of &% is
the conditional probability Pr(z;}, = m | z;7 = n). The
(m,n) entry of HY is Pr(y;’ = m |z}’ = n). The vector of
likelihoods of the states for model j in resolution level i at
time k is L. The likelihood of model j in resolution level
% at time k based on all data at resolutions 0 through i is
AY . The vector of likelihoods of all models at resolution %
is AL = (8. AT

The Hyperstate algorithm flow is given in Table 1.

4. ANALYZING VEHICLE NOISE AND
VIBRATION

Hyperstate filtering techniques are demonstrated on an acous-
tic data set for passenger vehicle engine starting sequences
involved in two experiments. In the first experiment, each
of four different vehicle types (A, B, C, and D) was started
a given distance from a reflective surface and the acoustic
signatures were digitized and recorded. The second experi-
ment recorded data for the same vehicles positioned farther
from the surface.

In the present analysis, the four starting sequence sig-
natures from the first experiment are used to develop the
Hyperstate models and filters. The model structures are
then fixed and the second set of signatures is processed.
The classification performance on the second data set is
then determined. The limited amount of training data (one
example per vehicle) and the fact that the second exper-
iment has slightly different test conditions than the first
make this is a difficult classification problem. This data set
is very limited, having only one recorded example for each
scenario and vehicle. Nevertheless, the Hyperstate analysis
is successful in characterizing the different features of each
vehicle.

The starting sequence is approximately 3 seconds in du-
ration, and four time resolutions were chosen: Tp = 3 msec,
Ty = 30 msec, T2 = 300 msec, T35 = 3 sec for filtering
Stages 0, 1, 2 and 3. A single channel of stereo data col-
lected by a head recording device, downsampled from 44.1
kHz to 22.05 kHz, was used. Then a state-space model for
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TABLE 1
Hyperstate Algorithm

For resolutions i = 1,2,..., R

Initialize prior state distributions L'.:,{ +)
for all models j =1,2,...,J;

s INPUT

Model likelihoods ,\;':1 from resolution i — 1 at rate
Ti—1 for times k = Ti—1,2Ti—1,...,T; (mod T3)*.

« NONLINEAR FILTERING FOR,
STATE LIKELIHOODS

For times k = Ti-1,2Ti-1,...,T; (mod T})
For models j = 1,2,...,J
Extrapolate state likelihoods
Update state likelihoods
Next model
Next time

« FORM MODEL LIKELIHOOD

For models j = 1,2,...,J; at times T; (mod T3)
Compute model likelihood
Compute new prior distribution

Next model

e OUTPUT
Model likelihoods A% for resolution % at rate T;, for
times t = T3, 27T%,...

Next resolution

!The term “(mod T;)” signifies that the steps for res-
olution 7 — 1 are repeated for successive time intervals of
length 7;. This provides outputs at times T3, 2T;,... that
are inputs to the resolution ¢ processing.

-the average acoustic signature of one of the four vehicles
is computed. This model serves as a whitening filter for
all the data so that the analysis corresponds to looking at
departures from the “average” signature which will distin-
guish between vehicles. The complete Hyperstate analysis
hierarchy is depicted in Figure 2.

After the whitening procedure, the data are fed into the
Stage 0 bank of filters. The filters are matched to a selected
set of spectral shapes corresponding to possible departures
from the white (average spectral signature) noise over a 3
msec interval. The filters consist of an all-pass filter (for the
white noise model), a low-pass filter with a cutoff frequency
of 500 Hz, two band-pass filters with passbands of [500 Hz,
2 kHz] and [2 kHz, 8 kHz], and a high-pass filter with a
corner frequency of 8 kHz. These filters are chosen using
psychoacoustic information and approximately correspond
to an equal division of the frequency domain with respect
to regions of maximum sensitivity for human perception.
The likelihoods of the five spectral models (denoted W, L,

B1, B2, and H) are passed on to the Stage 1 processing.

With inputs at 3 msec intervals and outputs at 30 msec
intervals, the Stage 1 Hyperstate models describe patterns
in the spectral shapes of Stage 0 over a ten time-step in-
terval. Over such short intervals, it is reasonable to con-
sider patterns of two dominant spectral shapes from the
set of five possible labels. Thus, twenty-five (52) two-state
Markov chains are used to model the temporal dynamics
between any pair of the four Stage 0 models. The likeli-
hoods of these models are computed and used as inputs to
the Stage 2 processing.

Stage 2 combines ten outputs (at 30 msec time-steps)
from Stage 1 to produce one output every 300 msec. Over
these intervals it is assumed that patterns of four spectral
shapes, described as pairs of Markov models from Stage 1,
characterize the transients. Since there are twenty-five mod-
els at Stage 1, 625 (25°) two-state Markov chains are used
to model the temporal pattern at Stage 2. The likelihoods
of the models are computed as outlined in Table 1.

Based on the Stages 1 and 2 outputs from the first ex-
periment, Stage 3 Hyperstate models were designed to clas-
sify these data into one of the four vehicle types, A through
D. The four Hidden Markov Models at Stage 3 each had
an observation space of dimension 625 corresponding to
the Stage 2 outputs. The classification probabilties out-
put at Stage 3 after each of the four signatures from the
first experiment were processed through the entire Hyper-
state hierarchy are shown in Table 2. A column in this
table corresponds to processing a single starting sequence
through each of the models for the vehicle types. For ex-
ample, Column B indicates the probabilities corresponding
to each Hyperstate model after processing the starting se-
quence from vehicle B. Using this data, the model for B is
found to have a probability of 0.91 while the model for C
has probability 0.09. As expected, each signature is cor-
rectly classified with classification probabilities near one —
in this case, the classifier is being tested against the same
data used to develop it.

The Hyperstate architecture developed above to match
the data from the first experiment was used to process
the data from the second experiment. These data were
sequestered and not used to develop the models. The clas-
sification probabilities are shown in Table 3.

TABLE 2
Classification Probabilities
First Experiment Models and Data

Training Experiment

MODEL DATATYPE
TYPE A B c D
A 0.00 0.00 0.00
B 0.00 0.00 0.00
c 0.00 0.09 0.00
D 0.00 0.00 0.00

Note that vehicle A is correctly classified using a max-
imum a posteriori probability criterion, even though the
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Hyperstate Filters
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Figure 2: Hyperstate Filtering Architecture for Staring Sequence Data

TABLE 3

Classification Probabilities
First Experiment Models and Second Experiment Data

Testing Experiment

MODEL DATATYPE
TYPE A B c D
A 0.00 0.00 0.00
B 0.00 0.00
c 0.37 0.01 0.04
D 0.18 0.00 0.00 0.00

probability is only 0.45. Vehicles B and C are correctly
classified with very high classification probabilities. Vehicle
D is incorrectly classified as type B. Considering that only
a single sample of training data was available, and that the
training and sequestered data exhibited different vehicle-
wall reflection patterns, the results are quite good.

5. SUMMARY

Hyperstate analysis is a new framework for modeling and
filtering of nonstationary stochastic processes that is espe-
cially well-suited for many NVH problems. It defines a rig-
orous way to compute probabilities for discrete, nonlinear,
nonstationary stochastic processes. The hierarchical Hy-

perstate formulation provides a computationally efficient,
mathematically optimal framework for nonlinear filtering
of multiresolution processes. The ability to explicitly model
and estimate nonlinear system dynamics on different reso-
lution scales can significantly improve signature discrimina-
tion and characterization performance. It can also provide
significant insights into correlating mechanical sources and
perceived sound quality, as well as providing malfunction
diagnostics. Its capability for automatic classification can
make it useful for replacing or supplementing human jury
evaluations. Hyperstate analysis is a general technique with
diverse applications, and it has been successfully applied to
the acoustic classification of vehicle starting sequences.

6. REFERENCES

(1] Basseville, M., et al., “Modeling and estimation of
multiresolution stochastic processes”, IEEE Trans. In-
form. Thy., March 1992, Vol. 38, No.2, pp. 766-84.

[2] Juang, B.H. and Rabiner, L.R.,“ Hidden Markov mod-
els for speech recognition”, Technometrics, August
1991, Vol. 33, No. 3, pp. 251-72.

[3] Lee, C.H., Juang, B.H., Soong, F.K., and Rabiner,
L.R., “Word recognition using whole word and sub-
word models”, Proceedings of ICASSP, 1989, pp. 683-
86. .

[4] White, J.V., “Modeling and filtering for discretely-
valued time series,” Chapter 10 in Bayesian Analysis
of Time Series and Dynamic Models, edited by J.C.
Spall, Marcel Dekker, Inc., New York, 1988.

2962

Classlfication
Probabliitles



