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ABSTRACT

This paper addresses the problem of detecting lane bound-
aries in color images of road scenes acquired from a
car mounted visual sensor. It is shown that the lane
boundaries in such images have to obey a set of global
constraint equations. All images with such constrained
lanes are modeled via deformable templates. The ob-
served tmage is related to the underlying lane boundary
features through a likelihood function which is based on
the degree of match (in magnitude/direction) between
the deformed template and the lane edges. The lane
detection problem is formullted in a Bayesian setting,
and it is posed as an equivalent problem of mazimiz-
tng a posterior pdf which sits over a low-dimensional
deformation space. This pdf is multi-modal, hence a
Metropolis algorithm is employed to obtain its maxi-
mum. Ezperimental results are shown to illustrate the
performance of this algorithm.

1. INTRODUCTION

The ability to detect lane boundaries in color images
of a road scene that is acquired from a ground-level
visual sensor, is an enabling or enhancing technology
with significant impact on the next generationof active
vehicular sensors, and use in a number of driver’s assis-
tant applications. These applications have dual use in
both commercial and military automotive systems such
as intelligent cruise control, lane departure warning,
virtual camber, autonomous driving, and navigation.

The goal that lane detection algorithms have to
meet is -

Robustly detect lane boundaries without prior
knowledge of the lane structure or road lo-
cation in the image. Do so under a variely
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of road pavement types and lane structures,
and under various weather conditions.

To achieve this goal we have developed a new and
novel solution to the lane detection problem. This so-
lution inherits the best elements of both the edge map-
based approaches and the variational template-based
approaches that exist in current literature. This so-
lution yields algorithms that find lane locations effi-
ciently, and does so under a wide variety of lane, road
and lighting conditions. The algorithm has the po-
tential to work in real-time while being simultaneously
robust - a highly desirable characteristic in both com-
mercial and military applications.

More specifically, our approach to the lane detection
problem is explained as follows:

1. Since lane boundaries are the only edges in the
image that are of interest to us, we derive a para-
metric equation that each of the lane boundaries
in the image have to satisfy. Using this equation,
we form a template image of lane boundaries.
This template has lane boundaries obtained by
fixing the parameters of the lane equations at pre-
determined values. As these parameters change,
the shape of the template lane boundaries deform
with it. The template image and its deforma-
tions, constitutes a deformable template model
of global shape (similar to those in [1}) for lane
boundaries. Our objective is to deform the tem-
plate (by changing the parameters of the lane
equations) so that the corresponding lane bound-
aries “match” the ones in the observed image.

2. In order to determine the deformation that best
“matches” the observed image, we derive a func-
tion that does a relative ranking among the differ-
ent deformations. This constitutes our likelihood
function, and it evaluates the degree to which the
edge magnitude and direction in the observed im-
age agrees with the one dictated by the deformed
template.
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3. Using the deformable template model and the
likelihood function, the lane detection problem
is formulated in a Bayesian setting. The problem
of locating the lane boundaries reduces to find-
ing the parameters values which yield the globally
maximal likelihood.

4. The likelihood function, however, is not convex
with respect to the parameters of the lane equa-
tions - it has many local maxima. In order to
escape these local maxima and find the deforma-
tion parameters of the template lane boundary
image for which the likelihood function attains
its global maximum, we employ a Metropolis al-
gorithm.

5. We present experimental results that illustrate
the performance of our lane detection (Metropo-
lis) algorithm on a variety of images. We show
a set of stills with the original image, and the
detected lane boundaries in white dashes over-
lying on them - see Fig. 1. The lane detection
algorithm seems to detect the desired boundaries
accurately on a variety of images - those in which
the lane markings are,clearly marked, when the
markings have gaps (dashed lanes), when there
are no markings (bike path), and when the images
suffer from degradations due to shadows, other
markings, and poor lighting conditions.

The main distinction between this work and prior
efforts in lane detection is that our algorithm does not
require a symbolic segmentation of the image data. The
systems for lane detection developed at Matsushita,
Honda, U. Bristol, Munich, and U. Michigan, for in-
stance, require a binary edge-map (see [2, 3] and the
references therein). This map is obtained from the ob-
served image by thresholding the underlying image gra-
dient. Shadows, lighting conditions, and other environ-
mental effects make selection of a suitable threshold dif-
ficult, and result in both missed and noisy edges. Our
work makes use of the image gradient as well, but does
so by asking what constitutes the most probable inter-
pretation of the gradient field as a road scene without
making local, pixel-by-pixel decisions regarding which
points in the image correspond to edges.

We note that this paper focuses on the problem
of lane detection - the determination of the location
of the lane boundaries in a road scene without prior
knowledge of the specific road structure. The results
of our lane detection algorithm can be utilized to ini-
tialize a system which then performs lane tracking - the
tracking of lane boundaries from frame to frame given
a prior model of lane structure. Such systems include

VaMoRs, VITA, YARF, SCARF, and VITS (again. see
(2, 3] and the references therein).

2. LANE GEOMETRY MODEL

In this section we derive the deformable template model
of global shape for the lane boundaries in a given road
scene. Following [3], we assume that the lane markings
and pavement boundaries defining the road and its lane
structure can be approximated by circular arcs on a
flat ground plane over the length of the road visible in
a single image. A circular arc with curvature % can be
further approximated a parabolic equation of the form
Lo 2
x:iky + my + b €))]
Assuming that the camera is not tilted,! and assum-
ing perspective projection, a pixel (r, ¢) in the observed
image projects onto a point (z,y) in the ground plane
according to the equations

r = chyy, and
- _H ’ @
y = rwy

where H is the height of the camera above the ground
plane, and h; and w; are the height and the width
of an image pixel divided by the focal length, respec-
tively. Substituting eq. (2) into eq. (1) and combining
the camera calibration and road shape parameters to-
gether, we derive the following equation that each of
the lane boundaries in the image have to satisfy:

+ br + Tp, (3)

~ |

where r = 0 denotes the row in the image plane corre-
sponding to the horizon.

Note that the different parabolic lane boundaries
eq. (1) in the ground plane are distinguished by differ-
ent values of the corresponding offset parameter “b”.
All of them share the same curvature parameter “k”
and tangent parameter “m”. This relationship between
the lane boundaries carries over to the image plane as
well. The different lane boundaries in the image plane
eq. (3) are distinguished by different values of the cor-
responding “b” parameter, whereas all of them share
the same “k” and “0,” parameters.

We form a template image of the lane boundaries
by assuming that the observed image has two lanes of
interest - we set the lane equation parameters to a pre-
determined set of values (lz' =0, b=41, Tp = %cmaz).

!In the case of tilted camera the derivation is very analogous
- see {3].
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The lanes in this template image (by its very construc-
tion) obeys the constraint equations. By changing the
values of the lane equation parameters k, b, ¥, we de-
form the template lane boundaries, and obtain various
other instances of it. The template image along with its
deformations (obtained by changing the two lane equa-
tion parameter sets) constitutes an a priori deformable
template model of global shape for the lane boundaries
in the observed image.

3. LIKELIHOOD FUNCTION

In this section we construct a function that relates the
observed image to the underlying lane boundary fea-
tures. This function evaluates the relative likelihood of
the various deformations of the template lane bound-
ary image, and it is based on the degree of match (in
magnitude/direction) between the deformed template
and the underlying lane edges.

More specifically, let §; = (I::, Ezeﬂ, Up)and f, =-
(l?:, Eright, p) denote the two sets of lane equation
parameters. The likelihood function is given by

L:(Ql,ﬂ,.) = Z My c fa(cz)s[dr,c - tr,C])fb(nr,c) (4)

Where,
1

T+ 622 ©)

fs(z)
denotes a spike function, ¢, . denotes the tangent ori-
entation at row r of the lane closest to column ¢, m, .
and d,. denotes the magnitude and the direction of
the image gradient at pixel (r,c),%, and n,. denotes
the distance from (7, ¢) to the nearest lane edge.

The first term in eq. (4) weights each pixel by the
magnitude of the gradient at that pixel. The second
term weights each pixel by the extent to which the
gradient at the pixel is perpedicular to the (deformed)
template lane edge tangent. The third terms weights
the pixel by its proximity to the (deformed) template
lane edge. The value of the lane equation parame-
ters 0,,0, that will maximize the likelihood function
L(9;,0,) is the one for which image pixels that are
closest to the corresponding lane edges have large local
gradient magnitudes, while they simultaneously pos-
sess local gradient directions that are normal to the
lane edges. A similar likelihood function is also em-
ployed in [5].

2The image gradient magnitude and direction are calculated
by using a 3 x 3 Prewitt operator as in [4]

4. BAYESIAN LANE DETECTION

In this section, the lane detection problem is formu-
lated in a Bayesian setting. This done by constructing
an ¢ posteriori pdf that is based on the deformable tem-
plate model of section 2 and the likelihood function of

section 3.
Let (4;,8,) be the hidden (unobserved) variable,

Zh Lr

and Y = y the given (observed) image. Then, the
posterior pdf of (8;,8,) given that Y =y is

P(@,6, 1Y =y) =
, (6)
K exp{L(8;,0,)}, if (8,,8,)€©
0, otherwise

where © is the space of all possible values that (4;,8,)
can take and K is a normalizing constant.

Given the image Y = y, the underlying lane bound-
aries are obtained by finding the value of the parame-
ters (8;,4,) that maximizes the posterior pdf in eq. (6).
The posterior pdf, however, is non-concave and has
many local maxima. In order to find the maximum of
this function we employ a Metropolis with a geometric
annealing schedule (see [6]).

The algorithm proceeds as follows:

1. Set k = 0, initialize (8'*, 8,
and evaluate E(Q_EO),Q,(,O))

2. Pick (él,ﬂ:,) at random among all the possible pa-
rameter values in the neighborhood of (ng), )

6.4, 1"
3. Evaluate p(*) = 4?)—_‘2% ,
£8:".9,

k
Fmaz

where T'(k) = T (%—)

4. Update (_O_gk“),ﬁgk'{'l))
(6,9,) if p¥) > 1
= ¢ (6,6,)  wp.1-p®if pB) <1

(_ng), Q_f.k)) otherwise

5. Set L6, 6%)) = £(g**D, gk +Dy
and k= k + 1

6. If k < kpmar go to step 2, else stop

5. CONCLUSIONS

A priori knowledge regarding the geometric structure
of lane boundaries can be expressed via deformable
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template models. These models are obtained by deriv-
ing a set of global constraint equations that each of the
lane boundaries in the image have to obey. The most
important visual cue, namely, the spatial continuity of
the lane edges in magnitude and in direction can be re-
lated to the lane boundary model by a likelihood func-
tion. This function can be locally computed and it is
based on the degree of agreement between the deformed
template boundary and the underlying lane edges. It
is shown that the lane detection problem can be for-
mulated in a Bayestan setting, and posed as a problem
of maximizing a low-dimensional posterior pdf. This
pdf is multi-modal, and to find its global maximum an
Metropolis algorithm is employed. Experiments with
this algorithm yields encouraging results on real road
scene images.
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7. EXPERIMENTAL RESULTS

In this section, we present experimental results that
illustrate the performance of our (Metropolis) lane de-
tection algorithm. Shown in Figs. 1 are stills of the
observed image with the lane boundaries correspond-
ing to the final results of the algorithm overlaid on top
of them.

The top two images show the algorithm’s perfor-
mance on images in which the lanes are continuous and

Figure 1: Stills of road scenes with the detected lane
boundaries overlayed on top in dashed white lines.

are clearly marked. The next two shows performance
on images where the lane markings have gaps (dashed
lanes), and when there are only pavements but no lane
boundaries (bike paths). The middle pair show per-
formance on images with shadows. The penultimate
pair shows performance on images when there are other
(non-lane) bright markings on the road, and the final
pair shows performance on images that acquired under
poor lighting conditions.

2958



