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ABSTRACT

A comparative study of techniques for finding optimal sen-
sor positions in a group of vibration sensors for knock de-
tection in spark ignition engines is presented. The methods
assumne the transmission of the acoustical oscillations in the
combustion chamber to the engine housing to be time invari-
ant and linear. Based on this model, suitable multiple tests
have been performed to reject sequentially irrelevant sensors
from the sensor group under consideration. It was found in
various simulations that two of the proposed methods that
do not assume any probability distribution of the data lead
to the expected results. In a real experiment performed on
a test bed using a four cylinder spark ignition engine, the
two methods reveal the same optimal sensor location for
monitoring knock in two gylinders at three different speeds.

1. INTRODUCTION

An effective means for lowering fuel consumption of spark
ignition engines has been to increase the compression ratio.
Further increase in compression is limited by the occurrence
of knock — an extremely fast combustion that generates a
knocking or ringing sound [2]. Frequent occurrence of knock
has to be avoided because of its damaging effect on the
engine, especially when operating at high speed.

Knock can be controlled by adapting the angle of igni-
tion. For an engine with a high compression ratio, the angle
corresponding to minimum fuel consumption is located in a
region where knock occurs, and thus knock can be avoided
only at the cost of decreased efficiency. To attain safe oper-
ation at maximum efficiency, engine knock control systems
have been developed to detect knock and adapt spark tim-
ing of each cylinder independently [1]. The performance of
such systems, however, suffers from the low signal-to-noise
ratio (SNR) of the structural vibration signal recorded by an
accelerometer on the engine wall. In-cylinder pressure mon-
itoring is preferred because of the high SNR of the signal but
requires proper mounting of a pressure sensor in each cylin-
der. Corresponding costs restrict use of in-cylinder pressure
to reference purposes in engine or fuel development.

Improvement can be obtained if one can find suitable sen-
sor positions of accelerometers for knock detection. A suit-
ably placed vibration sensor improves, independently of the
knock detection scheme, the detectability of knocking cycles
and permits safe operation with high efficiency.

The double-pulsed laser holography has been proposed for
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imaging knock-centres on an engine wall [5], but its applica-
tion is complicated and does not necessarily lead to a prac-
tical solution. Up to now, the sensor positions have been
chosen heuristically. Alternative methods that use signal
processing and statistical tests to find optimal sensor po-
sitions within a group of sensors distributed on the engine
wall have been proposed in 3, 4, 5]. In this contribution, a
comparative study of these techniques is presented.

The paper is organised as follows. We briefly illustrate
in section 2 the methods proposed in [3, 4, 5]. We then, in
section 3, compare their performance with simulations and
present experimental results obtained on using a 1.8¢, four
cylinder spark ignition engine, before we complete the paper
with discussions.

2. SENSOR IRRELEVANCY TESTS

Let S(t) and Z.(t), t = 0,%1,+£2,... be zero-mean station-
ary processes that model, respectively, the in-cylinder pres-
sure signal recorded via a pressure transducer for reference
purposes, and the vibration signal of sensor ¢, a =1,...,r.

Optimal sensor location concerns the selection of sen-
sors whose signals permit detection of knock with high
power. Our idea is to select a subvector of Z(t) =
(Z1(t), Z2(2), ..., Z-(t))’ such that its transformation by
time invariant and linear operations is near the reference
signal S(t) in some sense. This will lead to a minimum
number of vibration sensors that are suitably placed for de-
tecting knock in a spark ignition engine.

2.1. An Inverse Filter Approach

Let Z(t) = (X(t),Y(t)), where X(t) is an arbitrary (r —
1) vector-valued series. Based on the contribution of Y'(t)
to approximate S(t) by means of time invariant and linear
operations from Z(t), we develop tests for irrelevancy of the
sensor with output signal Y'(¢) [5].

Assume Czz(w) and Css(w) to be known a priori or by
estimation. We seek for suitable time invariant linear filters
with impulse responses g (¢) and gz(t) to recover S(t) from
Z(t) and X(t), respectively. We construct estimates Si(t) =
T BLU(wZ(t—u)and S2(t) = Yo g2(w)X(t—u) of
S(t) with errors £ (t) = S(t)—§1 (t) and E2(t) = S(t)—gz(t),
respectively. The minimisation of £1(t), for example, with
respect to gi1(t), in the mean square sense leads to a pre-
diction filter whose frequency response is given by Gi(w) =
Csz(w)Czz(w)™! and the error spectrum is given by

Ceie1 (W) = (1 = R52(w))Css(w) (1)
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where

Csz(w)Czz(w) 'Czs(w)
Css(w) ’

Riz(w) = Css(w) >0 (2)

is the multiple coherence of S (t) with Z (t) at frequency w.

The approximation of S (t) from X (¢) by linear time in-
variant filtering leads to an error spectrum similar to (1)
except that RZ 5 (w) is substituted by R% (w), which is ob-
tained from (2) by replacing Z by X.

Removal of a sensor from the group and use of only X ()
for approximating S (¢) leads to an increase of error spec-
trum that is proportional to 0 < R%; (w) — Rix (w) < 1,
which can be seen as the coherence gain contributed by the
sensor with output signal Y (t). The lower this coherence
gain, the less is the contribution of Y (¢) for approximating
S(t) from Z(t) = (X (), Y (t)) .

Thus, based on the closeness to zero of RZ ; (w)—R%x (w)
at some frequencies of interest, we shall decide the irrele-
vancy of the sensor with output signal Y (t) by testing the
hypothesis H : RZ; (w)—R%x (w) < R3(w) against the one-
sided alternative, where R3(w) is a suitably chosen bound
within the interval (0, 1). Details are found in [5)].

2.2. Linear Regression Based Techniques
Consider the linear prediction model

SH=Y Y sl Zalt—u) + ),  (3)

a=1l u=-o0

where g, (-) is the ath impulse response of the prediction fil-
ter and £(t) is the prediction error series. Based on (3), we
derive suitable tests to identify stepwise sensor signals Z, (¢),
a=1,...,r, whose contribution for predicting the reference
S(t) at certain frequencies is negligible, which results in op-
timal sensor positions within the group of r sensors.

Given SV(¢) and Z(t) fort =0,...,T-1,a=1,...,r,
l=1,...,L, where L is the number of independent combus-
tion cycles, we compute the finite Fourier transforms of the
time series data, and (3) becomes

ds(w) = dz(w)G(w) + de(w), 4)
where ds(w) = (dgyW),....dgw)(W)), dz(w) =
(dzl(w),...,dz,(w)), dZa(w) - (dzc(‘l)(w)w"!dz‘(‘L)(w))la
a=1,...,r and Gw) = (G1(w),...,Gr(w)) being the

vector of unknown transfer functions of the prediction filter.
Equation (4) represents for each frequency w a complex re-
gression with the complex coeflicients Go(w),a=1,...,r.

2.2.1. The Backward Elimination

The principle of this procedure is to eliminate stepwise ir-
relevant sensors from a group of arbitrarily distributed sen-
sors on the engine wall, based on the linear regression (4).
The number of remaining sensors is determined by the accu-
racy of the regression. In the procedure, we 1dent1fy stepwise
the sensor ! so that Rsz g (W) = min, (Rsz za) (@),

-,q, and test H: R}, ~q)(w) <

the one-sided alternative, where RZ(w) is a suitably chosen
bound, R.zs‘z.,-z(ﬂ) {(w) is the conditional coherence of S(t)

a =1,. R2(w) against

with Z,(t) at frequency w after removing the linear effects
of Z®(t), being a ¢ — 1 subvector of Z(t) that excludes
Za(t),a=1,...,q and q is the number of sensors remaining
in the group at this step. For a given level of 51gn1ﬁcance a
the hypothesis H is rejected if the statistic Rs 2 W) is
too small. In this case, the procedure stops a.nd all ¢ sen-
sors are kept. Otherwise, the Ith sensor is removed and the
procedure is repeated with ¢ — 1 sensors [4].

2.2.2. Rank Based Tests

Assuming independence and identical distribution of the
real and imaginary part of dg¢ in (4), we obtain the real
valued linear regression

Y(w) = V(w) B(w) + E(w) . (5)
Herein, Y(w) = (Re{ds(w)'},Im{ds(w)’'}) and B(w),
V(w) contain the suitably arranged real and imaginary parts
of the prediction filter frequency responses and the Fourier
transformed sensor signals, respectively.

To find sensors that are optimally positioned for knock de-
tection, we use a nonparametric test to first decide whether
there is no sensor giving relevant information on the refer-
ence signal by testing the hypothesis H : B(w) = 0 against
the two-sided alternative. In the case of rejection, we then
apply a test to decide the relevancy of additional sensors.

We use the quadratic rank test proposed by Adichie as
discussed in [3]. We calculate (omitting w)

Mg

_ (V'Y (Ry(Y)) (VV) T (V!9 (Ry(Y))) (6)
A*(Y) ’

wherein 1, (Ry(Y)) is a function of the ranks 'Ry (Y) of
Y with (i) = ¥(i/(2L + 1)) and A*(y) = [¢(u)* du —
¥?%, ¢ = [¢(u) du. For example, for the Wilcoxon scores
generated by ¥(u) = u, A%(¢)) = 1/12 [3].

For the decision, whether additional sensors improve de-
tection, it is necessary to test only some components of B.
For this, we re-write (5) in the form

Y (w)=Vi(w) Bi(w) + Va{w) Bo(w) + E(w), (7)

wherein B(w) = (Bi(w),B2(w)) and V(w) =
(Vi(w), V2(w)). The vectors Y (w) and E(w) are 2L vector-
valued as before. B, is 2r; vector-valued and the matrix
V,(w) has dimension 2L x 2r, for s = 1,2. It is of inter-
est to test Ho: Ba(w) = 0, B;(w) unspecified, against the
alternative K2: B2(w) # 0. Herein, B;(w) corresponds to
already chosen sensors and Bz(w) to further ones. A test
similar to the one given above that uses a statistic M, has
been proposed by Adichie and is discussed in [3].

2.3. Multiple Tests

In the tests given above, we held the frequency w
fixed. In knock detection one has to consider P res-
onance frequencies and also frequencies in the neigh-
bourhood of the resonance frequencies, because of the
dampings. Thus, we test the multiple hypotheses
H, _m,...,Him,..., Hp.—m,..., Hp,mn and the global hy-
pothesis Hyp := ﬂ:;l Nie_,. Hp.k, where Hy; is any of
the hypotheses discussed above at frequency wp i, k =
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Table 1. SNRs and resonance modes of the simulated signals.
Sensor S1 52 S3 S4 S5 S6 57 S8
SNR [dB] -23 -28 -28 -28 -28 -28 -28 -28
Modes 1,2 13 14 23 24 34 4 3

—m, ..., m, which is in the neighbourhood of the resonance
frequency wp with wpo = wp, p=1,..., P. For testing the
multiple hypotheses, we applied Holm'’s generalised sequen-
tially rejective Bonferroni multiple test [4, 5], except for the
rank based tests where a sum statistic has been used (3].
We also proposed a method for finding optimal sensor posi-
tions to control knock in more than one cylinder at various
rotation speeds.

3. SIMULATION AND EXPERIMENTAL
RESULTS

3.1. Simulation Results

To investigate the proposed selection procedures, we have
simulated a pressure signal and various sensor signals. The
process S(t) = Zf=1 Ape~ 9%t cos(wpt + &) + U(t) has been
used to model the reference signal in knock analysis. Herein,
Ap and &, are independently and uniformly distributed ran-
dom amplitudes and phases, respectively; d, are dampings;
wp are the cavity resonance frequencies for p = 1,..., P;
and U(t) is a white Gaussian noise process. We have fixed
P = 4 and génerated L = 200 records (except for the boot-
strap tests where only 15 cycles were used) of length T = 128
each. We have then simulated eight sensor signals. For this,
some of the bands centered at the four resonance frequencies
have been filtered out. These are numerated in increasing
order and given in Table 1. Noise has been added to generate
a sensor signal. The estimated SNRs of the sensor signals
are given in Table 1. Sensor S1 has the highest SNR and is
the optimal one. Clearly, the method should be able to find
the group (S1,86) if one is interested in two sensors in the
case of a six cylinder engine, for example. This is because
the output signal of S6 contains the missing resonances in
the signal of S1.

In the simulations, we have considered two neighbouring
frequencies (m = 1) to each resonance frequency. The tests
of the hypotheses were applied at a multiple level of signifi-
cance a = 5%.

3.1.1. The Inverse Filter Approach

The irrelevancy of an arbitrary sensor was tested by in-
terchanging the components of the vector Z(t) and each
time performing a multiple bootstrap test based on Holm’s
generalised sequentially rejective Bonferroni procedure. In
Table 2 the number of rejected hypotheses is noted for each
tested sensor Si, ¢ = 1,...,8, that is the sensor with out-
put signal Y(¢). In step 1, the vector Z(t) was composed
of all eight sensor signals (r = 8) and the bound R} was
taken to be 0.04. H was retained for the sensors S2, $4,
S6, S7 and S8. Sensor S7 was removed because its signal
led to the lowest mean value of the sample coherence gain
over the frequencies of interest. In step 2, the test was re-
constructed with r = 7 and RZ = 0.05. For the same reason
as above, we removed sensor S4 and proceeded to the next
step. In step 6, H was retained for sensor S3 leading thus

Table 2. Number of rejected hypotheses for each sensor test.
Sensor S1 s2 S3 S¢4 55 86 S7 S8

Step
-1 3 o0 2 0 2 0 o0 0
2 3 0 2 0 1 0 - 0
3 4 0 2 - 2 0 - 0
4 3 - 2 - 1 0 - 0
5 2 - 1 - 0 2 - -
6 2 - 1 - - 1 - -
7 4 - - - - 0 - -
Rank 1 - - - - 2 - -

Table 3. Number of rejected hypotheses for each sensor test.
Sensor S1 S2 S3 S4 S5 S6 S7 S8

Step
1 4 1 3 1 3 0 1 1
2 4 1 3 1 3 - 1 1
3 4 2 2 1 2 - 1 -
4 4 2 2 1 1 - - -
5 4 1 2 - 2 - - -
6 4 - 1 - 1 - - -
7 4 - - - 1 - - -

Rank 1 - - - 2 - - -

to the expected result. If one is interested in a group of two
sensors, the group (51,86) is found to be optimal. If only
one sensor is required, the tests in step 7 lead to sensor S$1.
In Table 2, the bound RZ was varied from 0.04 to 0.1 in 0.01
increments.

3.1.2. The Backward Elimination

In Table 3, Si, t =1, ..., 8 denotes the sensor whose irrel-
evancy is to be tested, that is, the sensor with output signal
Z,(t). In step 1, the vector Z(t) was composed of all eight
sensor signals (¢ = 7 = 8) and the bound R was taken to be
0.042. The global hypothesis Hp is retained surprisingly for
sensor $6. It should have been sensor S7 or $8. In step 2, the
test was re-constructed with ¢ = 7 and RZ = 0.045. The
lowest number of rejected hypotheses occurs with sensors
S2, S4, S7 and S8. We calculated the mean values over all
frequencies of the conditional coherences of the sensor sig-
nals and found that the lowest value was attained by sensor
$8. Therefore, we removed the latter and proceeded to the
next step. In step 6, the global hypothesis Hy is rejected
for all sensors. For the same reason as above, we removed
sensor S3 from this group. If one is interested in a group of
two sensors, the group (S1,55) is found to be optimal, which
is incorrect. If only one sensor is required, the tests in step
7 lead to sensor S1 which is the ideal. In the simulations,
the bound RZ varied from 0.042 to 0.084, which was based

157 1 P m 2
on q £va=1 P Ep:l Zk:—m RSZG-Z(") (wp'k)'

3.1.3. Rank Based Tests

Under the assumption that the M statistics at differ-
ent frequencies are independent, which holds for large T,
we may test the irrelevancy of a sensor by considering

P .

My = Zp:l Yore o Mr(wpx). Under the hypothesis no
regression possible, i.e. the sensor is irrelevant, this sum

is approximately chi-square distributed with 2r(2m + 1)P
degrees of freedom. We reject Hp if, for a given level
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Table 4. My and My of the simulated signals. Selected
sensors appear boldfaced.
Sensor 51 s2 s3 sS4 SS 56 sS7 S8
Step
1 238 194 196

181 193 170 130 86

2 - 143 157 138 152 165 127 78
3 - 111 130 112 126 - 91 50
4 - 97 - 108 117 - 75 50
Rank - 3 - 4 2 ~ -
®5K1 cylinder head
o Bl - D3
"§ 533 |e sA23
= ° Az 53 [ ©
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Figure 1. Position of sensors on the engine.

of significance a, the statistic My is too large. Simi-
larly we construct My = Zp_l S Mo(wpk) to test

Ho = np_____l nk:—m Hpk, Hapk: B2pr = O against the
two-sided alternative.

In order to find the optimally placed sensor group, we first
test whether a single sensor is suitable to predict the refer-
ence signal. For this purpose, we compute Mp. Sensors for
which the hypothesis Ho fis not rejected are removed from
the group. Among the remaining sensors, the one leading
to the highest My is chosen. In the following steps, the
gain reached by adding a further sensor to the already de-
termined one is tested. Using M, we remove sensors for
which the global hypothesis Ho is not rejected and select the
one with the highest M. This procedure is repeated until
enough sensors are determined or no sensor is left. Table 4
shows that sequentially sensor S1 and sensor then S6, whose
signal contains the missing resonances 3 and 4 in the signal
of sensor S1, are selected.

These results show that the bootstrap and the rank based
tests are superior. They both lead to the expected results.
It should be noted, however, that more simulations were
performed. These were based on generating sensor signals
with correlated noise but with all resonance modes present
in the signals. In these situations the backward elimination
procedure led to the expected results {4].

3.2. Experimental Results

Experiments were performed using a 1.8 £, 4 cylinder engine.
The high-pass filtered pressure signals of the cylinders 1 and
3 (D1 and D3 in Figure 1) were recorded by an instrumenta-
tion tape recorder together with the output signals of eight
acceleration sensors. Two of these sensors (sensor SD and
$2 in Figure 1) had been mounted at the place suggested
by the engine manufacturer, the other ones at heuristically
chosen positions on the engine wall and on the cylinder head
(sensor SK1). Two sensors, SA2 and $A23 had been mounted
at the outlet side of the engine block, all others at the inlet
side. Figure 1 schematically shows these positions.
Experiments were performed at 1750, 3500 and 5250 rpm

and at full load. Strong knock intensity was adjusted. Three
thousand cycles were digitized with respect to cylinders 1
and 3 for the analyses. Approximately 200 strong knocking
cycles for each rotation speed and each cylinder were chosen
for the tests, except for the bootstrap tests where only the
strongest 15 cycles were selected.

Four resonance frequencies were estimated by averaging
periodograms of the knocking cycles of S(t) and localising
spectral peaks. Two neighbouring frequency bins to each
resonance frequency have also been considered.

Multiple tests at a multiple level of 5% based on two in-
cylinder pressure signals and three rotation speeds suggested
the pair (S23,534) in the case of the inverse filter approach
and the pair ($23,5423) with the rank based tests. This is
a result if one is to use two sensors for detection. However,
in our case where a four cylinder engine was investigated
only one sensor is required. Both methods suggest the same
single sensor S23.

4. DISCUSSION

We have discussed methods for finding stepwise (ir)relevant
sensors from an arbitrary array of vibration sensors for use
in detection of knock in spark ignition engines. This is based
on a linear prediction of the in-cylinder pressure as a refer-
ence from vibration signals by linear time invariant opera-
tions. The techniques have been tested by simulations. It
was found that rank based as well as bootstrap tests lead
to the expected results. Both methods do not assume any
distribution of the sensor data. Results obtained for engine
data measured on a test bed suggest sensor positions that
do not include the position proposed by the engine man-
ufacturer. It should be, however, noted that the proposal
made by the manufacturer was based on heuristical consid-
erations. The methods developed can be easily applied to
other problems encountered in vibration analysis, provided
a suitable reference signal is available. Some applications
of importance include the detection of wear or breakage of
cutting tools in a milling process.
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