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ABSTRACT

Accurate detection and characterization of changes in
EEG signal is crucial for clinical assessment of the neu-
rological system condition. Several distance measures
are tested and evaluated for their effectiveness of de-
tecting injury-related changes in EEG. Itakura distance
is found to be a very efficient means to characterize
changes in EEG for both signaling injury and predict-
ing recovery. The efficiency of the Itakura distance
measure is further established through a comparison
study of spectral distance ‘measure and KL informa-
tion.

1. INTRODUCTION

It is very important to determine the degree of brain
damage following birth hypoxia/asphyxia in neonatal
intensive care[l]. An early indicator of this type of
injury is critical for the management of infants with
hypoxic-asphyxic encephalopathy. Clinical evaluation,
imaging, and biochemical methods are a few techniques
being frequently used, but they are of value only after
first few days of birth.

There have been many attempts to study brain in-
juries through EEG analysis (e.g., [2] and [3]). In [2],
changes in frequency distribution of EEG were stud-
ied in the event of hypoxia/asphyxia. A coherence-
based linearity index was developed in [3] to character-
ize changes in event-related EEG when hypoxic injury
occurs.

Here, we attempt to answer the following question:
how to quantify the changes in EEG signal through
a distance measure. To accurately quantify changes
in EEG, we parameterize EEG signal with an auto-
regressive (AR) process. It is conjectured that as the
state of the brain changes (especially when injuries oc-
cur), the properties of the EEG signal will also change.
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Such change will be reflected in the parameters of the
AR process modeling the EEG signal.

In digital speech processing, a similar question was
addressed. In applications like objective speech quality
measurement and speech recognition, it is desirable to
determine the degree of similarity between two speech
utterances[4]. A speech signal can be modeled as the
output of an AR process driven by either a white noise
(for unvoiced speech) or an impulse train (for voiced
speech). The task becomes how to measure the dis-
tance between two sets of AR parameters modeling the
two utterances. Various distance measures have been
proposed for this purpose. One of the most successful
methods is Itakura distance measure{5].

In this paper we evaluate the effectiveness of us-
ing Itakura distance[5] for measuring the changes in
EEG signals with special emphasis on the changes re-
lated to injury (hypoxia/asphyxia). The performance
of Itakura distance measure is compared with the per-
formance of other methods, such as spectral distance
measure[6] and Kullback-Leibler (KL) information[7],
for quantifying the injury-related changes in EEG sig-
nals.

The rest of the paper is organized as follows: Sec-
tion 2 summarizes various distance measures to be em-
ployed: Itakura distance, spectral distance, and KL
information. Data collection procedure is briefly intro-
duced in Section 3. Analysis results are presented in
Section 4. Some conclusion remarks are given in Sec-
tion 5.

2. DISTANCE MEASURES

~ 2.1. Itakura Distance

Suppose that the following AR model of order M is
obtained for a reference signal r[k]

M
r[k] = Za}'r[k—i]+n,.[k], (1)

=1
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where n,[k] is the unpredictable part of r[k] (white
noise). Similarly, an AR model is obtained for a test
signal t[k]

M
t[k] = Z altlk — i) + ne[k]. (2)

The distance between the reference and test signals
may be reflected by a proper distance measure between
the two sets of AR parameter coefficients. Euclidean
distance is not appropriate because the individual AR
parameters may be highly correlated.

Itakura measure calculates the distance between the
two sets of AR parameters as follows: Let us denote the
AR parameter sets as two vectors

a=[t —af ~a] -+ — o]
=01 —af —af o —alT.

Let R, be the correlation matrix for r[n]

7-(0) 7-(1) 7 (M)
7(1) 7-(0) 7 (M -1)

w(M) B(M~1) - 7(0)

where 4, (3) is the autocorrelation of r[n]. Similarly we
can define R;. Itakura distance can now be defined

O

r(rt) = log

If the AR parameters o are obtained by minimizing
the mean square error (MSE)

M
min E(r{k] — ) arlk —i])?
=1
the minimized MSE is given by a” R,a. Any other AR
parameter set 8 # a will result in

BTR.8 > o" R,

Intuitively, Itakura distance can be understood as
follows: By passing the reference signal r[k] through an
inverse filter

= dj(r,t)>0.

M .
H(z)=1-) a2~ (4)

=1

we obtain a residue error n,[k] at output. The energy
of this error is denoted as £,. Similarly, we can pass
r[k] through the inverse filter

Hy(z)=1- Za‘ - (5)

=1

and denote the energy of the output as {g. The closer
to « the parameter set 3 is, the smaller the residue en-
ergy £g, since a is so obtained to minimize the residue
energy. A distance closer to zero indicates an energy
ratio closer to one, thus a closer match between ref-
erence and test signals. Itakura distance sometimes is
also called energy ratio distance for this reason.

We can also find out how well the parameter set «
models the test signal by calculating

of Ria
8 FTRE

Combining (3) and (6) we have a symmetric distance
measure

di(t,r) = (6)

di(r,t) = %(d’,(r, £) + di(t, 7). (1)

Note that df(r,t) is still not a metric because the tri-
angular inequality is not satisfied.

2.2. Spectral Distance

Another means to measure the difference between two
AR processes is through spectral distance. Based on its
AR parameters, spectrum magnitude for an AR process
r[k] can be obtained as follows:
S = . (8)
1 B2, apeir

The gain factor is ignored so that we can obtain the
normalized spectrum. Similarly we can calculate the
spectrum magnitude S;(e??) for ¢[k].

The spectral distance is defined as follows

1/p
ds(r,t)={ Els(e’“‘) 5(6’“‘)!’} (9)
1=0

where

This measure is commonly referred to as the linear un-
weighted spectral distance in speech processing[6].

Various weighted spectral distances have been de-
veloped in speech quality assessment applications where
the characteristics of the frequency response of human
auditory system are taken into consideration. These
weighting factors are not applicable here. Further re-
search perhaps can reveal the relative clinical impor-
tance of the various spectral components of EEG and
better weighted spectral distance measures can be de-
veloped. For our purpose here we will use the definition
in (9) with p=1 or p=2 and L = 256.
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Figure 1: Sample traces of EEG signal at various stages
of the experiment. Each trace has a duration of five
seconds. DC bias was removed and the amplitude is
normalized. '

2.3. Kullback-Leibler Information

Aside from being modeled as the output of an AR pro-
cess, EEG signals have also been studied as a stochastic
process with a given distribution. It is reasonable to
assume that injury to the brain causes changes in the
distribution of the EEG signals. Thus injury-related
changes in EEG can also be detected through quan-
tifying the changes of the distribution function of the
EEG signals.

The KL information[7] measures the distance be-
tween the test distribution with the probability density
function p;(z) and the reference distribution with the
probability density function p,(z). The KL informa-
tion is defined as follows:

dg(r,t) = ‘/:: pe(z)In :EZ; dz. (10)

We always have dx(r,t) > 0 and the equal sign is valid
if and only if p;(z) = p,(t). The smaller dx(r,t) is, the
closer the test signal’s distribution is to the reference
signal’s distribution. '

3. DATA COLLECTION

Neonatal piglets (1-2 weeks old) were exposed to a se-
quence of 30 minutes hypoxia, five minutes of room
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33— AR Model Order M=8
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Figure 2: Itakura distances obtained with different
AR model orders. Regardless of the model order,
the Itakura distance changes significantly when brain’s
condition changes. Arrow indicates the first data seg-
ment processed for that period.

air, and seven minutes of asphyxia followed by a four
hour recovery period. Continuous two channel cortical
EEG signals were recorded throughout. In data anal-
ysis, EEG from a sleeping uninjured piglet serves as
the reference signal r[k] and the current EEG from the
same piglet is used as the test signal {[k]. The EEG
signals are sampled at 100 Hz. Sample traces of EEG
signal at various stages of the experiment are shown in
Figure 1.

4. DATA ANALYSIS

One minute segments of data at various stages of ex-
periment are analyzed and the distances between these
data segments and the reference data segment are com-
puted. Autocorrelation method is used to find the AR
model parameters for each segment of EEG. Distances
between current and reference EEGs for both left and
right channels are calculated and they vary in a very
similar fashion. This is true for all three distance mea-
sures investigated. Thus, in the following analysis, left
and right channel distances are additively combined.
Figure 2 shows the Itakura distances between cur-
rent and reference EEGs at various stages of experi-
ment. Three different AR model orders (M = 4,6, 8)
are used and the results are almost identical. The
Itakura distance is very sensitive to the injury-related
changes in EEG. Compared to the distance for EEG at
hypoxia stage, the distance between EEGs at asphyxia
stage and normal stage rises sharply, indicating a much
more severe insult to the brain had occurred. As re-
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Figure 3: Comparison between spectral distance mea-
sure and Itakura distance measure. Arrow indicates
the first data segment processed for that period.

covery progresses, the Itakura distance between current
EEG and normal EEG gradually approaches zero. This
coincides with the fact that the animal recovered from
the injury based on follow-up observations.

Using Akaike information criterion[8], the optimum
AR model order is found to be M = 6 for the ref-
erence EEG. Itakura distance with M = 6 is used in
the following comparison study. Figure 3 compares the
Itakura distance and the spectral distance measure of
various norms (p = 1 and 2). Finally, both Itakura
distance and KL information are plotted in Figure 4 as
a function of different stages of experiment.

5. CONCLUSIONS

From the data analysis results we conclude that the
Itakura distance responds reliably to the changes of
the neurological system due to injury. It can also dis-
tinguishes the two types of insults to the brain (hy-
poxia/asphyxia) under study. Spectral distance mea-
sure is effective in signaling changes in EEG due to
injury but the ambiguity is greater in distinguishing
hypoxia and asphyxia. The KL information is not
very sensitive to hypoxia but it responds quickly to
asphyxia. Overall, we determine that the Itakura dis-
tance measure is an effective indicator of the neurolog-
ical system condition. Development of this type of tool
may be very useful in monitoring patients in operation
room or intensive care unit.
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Figure 4: Comparison between KL information and
Itakura distance measure. Arrow indicates the first
data segment processed for that period.
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