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ABSTRACT

Time series analysis applications of eigenstructure
algorithms focus on temporal frequency estimation . We
show that the ESPRIT algorithm can also be applied to
simple phase delays for sinusoids. We show that a time
delay data model can be rendered in the ESPRIT matrix
pencil structure. The PRO-ESPRIT formulation can be
then utilized to solve for phase delays among sinusoids.
An application area for this algorithm is the estimation of
short time delays for low frequency sinusoids comprising
EEG (electroencephalographic) recordings derived from
different neural sites during epileptic seizure activity.

1. INTRODUCTION

Array signal processing algorithms utilizing
eigenstructure models have shown to provide robust
frequency estimation of time series data [6, 9, 12].
Sinusoidal parametrization offers the advantage of high
resolution coupled with time domain data processing
which isolates noise contributions resulting in a higher
SNR environment. The ESPRIT algorithm of Paulraj,
Roy and Kailath [6, 7, 8] provides frequency estimation
performance through the exploitation of invariant
structure of uniformly sampled data [6, 12]. This
algorithm can furnish sinusoidal series time delay
estimates as it does frequency and angle-of-arrival
estimation [9,12].

As has been illustrated in previous accounts [9],
these array processing techniques often find widespread
applicability in neural signal processing situations. It
offers a compact representation of aberrant highly
synchronized oscillatory behavior in the central nervous
system. In the current scenario we chose to study the
delay relationships of low frequency sinusoids between
electroencephalogram (EEG) electrode recording sites
during chemically-induced epileptic seizures in animals
models. The tracking of EEG signals during epileptic
seizures is critical for the identification of neural
pathways active in the propagation of paroxysmal
electrical activity. The development of robust and reliable
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time delay estimation (TDE) algorithins for epileptic
seizure pathway localization is of intense, current interest
{10]. Studies in our laboratories have focused on
identifying the involvement of subcortical centers in the
propagation of generalized seizures in the rat. The use of
a variety of neurophysiological techniques have identified
the anterior thalamus (AN), a collection of specialized
nerve cells in the subcortical region of the brain, as a
functional relay for generalized epileptic seizures [1, 2, 3,
4]. EEG recordings from cortex (CTX) as well as other
subcortical sites such as hippocampus (HPC) have been
made for electrical signal confirmation of secizure
patbways. Ordinary and partial coherence studies have
indicated that a narrow range of low (0-6 Hz) frequencies
between AN and cortex is uniformly high in coherence.
Reliably high coherences (f(f) > 0.8) are often found in
this baseband frequency range. This is within the spike
repetition rate range for several models of spike-wave
epilepsies [5].

Since we would like to establish finite non-zero time
delays between AN and CTX, we can capitalize on the
results of exploratory data analysis and calculate time
delays  within a purely narrowband region of the
Sfrequency spectrum. Within this low frequency portion of
the spectrum, we can represent signals at CTX and AN by
simple delayed sinusoids. The PRO-ESPRIT formulation
of Zoltowski and Stavrinides {8, 9 12] is the ESPRIT
technique utilized. PRO-ESPRIT offers robust results with
few data realizations. This method can handle singular
forms through a systemic transition from signal or data
matrices to noise-free or “"cleaned" correlation matrices.
Once the number of sinusoids is known, the correlation
matrices can be reduced to the full rank signal
information matrix at the core rotations level. The
eigenvalues of this matrix are the GEs (generalized
eigenvalues) of the singular data matrices. These contain
the necessary phase information dealing with delays.
PRO-ESPRIT also provides a method for associating
frequency estimates with corresponding phase delays
factors. In sections 1 and 2 we show ESPRIT time delay
formulation and its solution. Through computer

0-7803-2431-5/95 $4.00 © 1995 IEEE



simulations and real data analysis, we show the practical
use of this method in sections 3 and 4, respectively.

1. SIGNAL MODEL

A collection of D sinusoidal signals, s;(¢), fori=1,...D,

with fixed amplitudes plus additive stationary white noise,
n, (t), comprises signal, x(z). At different observation

times or snapshot, k,k=1,...N, a signal of length M is
recorded. The signal representation is

x, (1) = 2 a,,5,(8) +n,, (1) 6))

D
=Y a, exp(Jo,t)+n, ).
=1

The amplitude coefficient, a, = A, exp(j0,,)consists of a
random phase term,exp(j0,,), as well as amplitude terms,
A;. We assume that the amplitude terms are constant from

observation interval to observation interval. Another
assumption is that the sinusoids are uncorrelated so that
all k,

B = ml, ;
holds for i =1,...D; j=1,...D andi# j and m is a real
constant. The noise is considered to be uncorrelated from
one observation interval to the next.

The signal from x is delayed and appears at another
recording site, y, with its own additive white noise source,
n, (), which is uncorrelated with the noise at x. At site y
each sinusoid term is delayed a fixed angular quantity, ¢
so that the signal appears as

D

W@ = a5t =T)+n5 (1) (2)

i

i=1

D
=D ai; exp(j;) exp(j0 1) +ng 5 (1)
i=1
The relationship between temporal and angular delay is
simply T; =¢;/®;. We assume that delays for each
sinusoid are independent of one another so that the
traditional linear delay hypothesis need not be followed.
Each signal captured during a particular observation
interval can be rewritten as an Mx1 vector
x(0) =[x1 %2 ... O]
(A similar form exists for y(k)). All of N individual
vectors, x(1),x(2),...x(k), can be grouped to form a
MxN data matrix X
X =[x(1)x(2)---x(N)]
These data matrices can be decomposed into

D
X=SA+N, =Y sal +N_ (3a)

i=1

D
Y=SOPA+N, =Y o¢,sa7 +N,  (3b)

where @ =diag[exp( Jo) exp(jo,) - eXp(j¢D)] and

Sz[s1 Sy o sD]
;7 =[1 exp(jo;) exp(j20;) - exp((M-1)o,]
A=[a1 a; - aD]
ai=[Aexp(j9M) Aexp(JO;,) ... Aexp(je,-‘N)]
Examining the noise-free data matrices we can easily

see that the data matrices have the necessary ESPRIT
matrix pencil structure at this juncture, namely

D
Yp-AX)p = Z(¢i - 7")SiaiT 4

i=]l
Data vectors in matrix Y differ only by those in matrix X
by an angular displacement or phase delay, ¢;,i=1,...D.
When A =¢;, the rank of the pencil drops by one.
Following [7] the delays are the generalized eigenvalues
of the matrix pencil, {Y,X}. It is important to note that
we have not restricted the GEVs to the umit circle.
Without any gain compensation, the GEVs may deviate
from the unit circle.

2. SOLVING FOR THE GENERALIZED
EIGENVALUES IN A DELAY MODEL
Following singular value decomposition (SVD) of the X

data matrix we have
1 D
WXD =UREV =N o, u v, ! (5)
i=1
where X[, is the noise-free data matrix weighted by the

variance stabilizing constant, 1/+/N. Here we include
only those left and right singular vectors with nonzero
singular values and signify this by the use of the D
subscript. In [12] we see that the matrix pencil, Y -AX,
can be written in terms of the components of (5), namely

Y, -AX, =U,PU0, PPy, v, PV, PH _\U PHE Py D (6)
where we exploit the orthogonality of left and right
singular vectors. Ultimately the GEs for this matrix arise
from the core information matrix (CIM) rendition derived
from the proof in [12] and equivalent to the CIM in [8].

Y, —AX, = U,?Z,?{Z,?“U,?” Y, X, #ulsl - MD}V,P” (7
An eigenvalue/eigenvector decomposition (EVD) of the
CIM or ¥ =22"'UPHY, X, #UPEL ' gives the GEVs
that we need to find the phase delays for the various
sinusoids.

As we do not have access to noisefree SVDs of the

data matrices, we deal with quantities derived from the
cross-correlation matrix,
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I, . a_lyon
C,, =— X, =—Y,X,“, 8
n=y gh e = YoXp )
and the EVD of the "clean" autocorrelation matrix,
1 & 1 2
Cp == 2. x,%. 7 ==X, Xp# =UPE2"U2 (9)
NS N ‘
Here noise contributions have been removed from the D
largest eigenalues.

We also need to associate a particular GE or phase
angle with its corresponding frequency component. As in
[12] we note that the orthogonality of right singular
vector of the data matrix pencil (Y - A.X}rj = () guarantees
that

_110%D
er=cs]--UxeBj (10)
where ; is the jth eigenvector of ¥ and c is a constant.
Since s ; has a Vandermonde structure, specific frequency
information can be extracted by first normalizing cs; by
its first element, ¢, to arrive at s;. At this point the

frequency associated with the jth GE is proportional to the
argument of any elementof s;.

3. SIMULATION: COHERENCE EFFECTS

In order to test the performance of the algorithm, the
accuracy of phase delay estimation was conducted on a
computer using MATLAB with varying levels of
coherence.  Unity amplitude complex sinsusoids at
frequencies, f; =0.11& f, =0.18comprise the signal
x(t). Delayed versions of each signal comprise a portion
of the signal at y with phase delays of 0.691 and 1.508
radians, respectively. The signal at y also contained a
signal at frequency f, fwith random phase uncorrelated
with either of the delayed signals. The power of this
signal was varied and P, the fraction of correlated signal

energy to total power at y for the signals at f, was

Table 1: STANDARD DEVIATION OF PHASE
DELAY AS A FUNCTION OF CORRELATED
SIGNAL FRACTION (in fractions of 21)

Power Number of
Fraction Observations
10 20 40
0.990 0.0037 0.0026 0.0019
0.962 0.0066 0.0047 0.0034
0.862 0.0134 0.0092 0.0075
0.735 0.0234 0.0148 0.0115
0.610 0.0272 0.0195 0.0131
0.50 0.0392 0.0242 0.0165
0.310 0.0644 0.0418 0.0240
0.20 0.0821 0.0538 0.0401

calculated according to P, = A> /(A +B*) where A

and B are the amplitudes of correlated and uncorrelated
sinusoids, respectively. Data for both x(¢) and y(z) was
free of noise for this test.

Simulations consisted of 100 trials containing N=10,
20 or 40 observations or “snapshots" each. One
observation consisted of 10 data points. Kronecker
products forming 10x10 correlation matrices were used.
For the purposes of angle estimation the two largest
eigenvalues and their respective eigenvectors were used
from C,, for generating V. Standard deviations of phase
estimates were calculated and presented in Table 1. There
is an decrease in variance as expected with an increase in
the number of observations. Likewise as the uncorrelated
power increases, the variation in phase delay increases as
well. This shows that coherence efffects determine the
accuracy of the phase estimation.

4. DELAYS IN EXPERIMENTAL DATA

Experiments were undertaken which induced
seizures in rats. The model for generalized seizures used
pentylenetrazol (PTZ) as the agent for seizure induction.
Electrodes were placed epidurally for cortical recordings
with depth electrodes in (HPC), AN as well as posterior
thalamus (PT). The protocol for electrode placement as
well as animal care and experimentation is described
elsewhere [4].

During the experiment 4 channels of EEG are
recorded continuously using a Grass amplifier. Data was
sampled at 500 Hz. To prepare the data it was filtered and
downsampled to 62.5 Hz. The data was filtered using a
lowpass Park-McClennan filter with a cutoff of 6 Hz. The
analytic signal was formed after taking the Hilbert
transform of long data segments. Filtering restricted the
time series to having mostly a single dominant sinusoid at
the repetitiion frequency. Segments of EEG during clonic
episodes were analyzed from CTX, AN and HPC.
Examples of data from AN and Cortex are shown in Figs.
1 and 2, respectively.

The algorithm was implemented over several 2
second epochs using 120 observation intervals each 10
pts. long. New intervals began after one point increments
according to [12] so that overlap is 119 data points. The
overlap between epochs was 50% or one second. Model
order was set to 1. GE estimation for phase delay was
made using the eigenvalues of the CIM in (7). Frequency
estimates for this single dominant sinusoid and its
corresponding GE was made using the MUSIC algorithm
and the eigenvectors from x(¢) and y(¢). The frequency
estimate for the respective GE must be less than 6 Hz.
Also to be considered a valid phase delay estimate, the
corresponding frequency estimates for x(¢) and y(r)must
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not differ by more than 2A, where A, =0.3125 Hzso

that widely varying frequency estimates are rejected.

In Fig. 3 we can see that for one of the animals the
delay actually drifts over time and begins to shorten.
Delays start out as 100 ms and decrease to nearly 60 ms.

Ultimately, the delay for communication between
subcortical centers is shorter by about 1/4. In the same
animal delays between HPC and AN average over two
clonic episodes to 2.5 and 11.6 ms with AN leading.
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Fig.3 Drift in Cortical-Anterior Thalamus Delays During

a Clonic Episode. Positive Delays Indicate that Cortex
is Leading

This series of short delays may illustrate the ultimate
practicality of these methods, namely the calculation of
extremely short time delays that are evident for groups of
neurons (nuclei) that are in close proximity to one
another.

5. CONCLUSIONS

The use of eigenstructure techniques is a versatile
tool in the analysis of seizure pathways. Parametric
modeling of seizure events affords us the opportunity to
examine very short sinusoidal delay during highly
correlated seizure activity between recording sites within a
particular frequency band.
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