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ABSTRACT

In this paper, we present a method that is a generalization of hid-
den Markov modeling for the situations where elementary events
cannot be clearly defined. A family of fuzzy sets, induced on a
temporal universe, is used to model the dynamic trajectory of a
physical system as a collection of hidden processes that coexist at
the same time, but to different degrees. An algorithm based on
unsupervised pattern recognition that estimates the prototypes and
activities of the hidden processes is presented. The performance
of the method is illustrated using experimental data obtained from
electroencephalographic (EEG) signals recorded during sleep.

1. INTRODUCTION

Some real-world systems, biological and others, can be thought of
as being attracted to specific thodes of dynamic behavior during
their existence. This property may be observed within small as
well as large time scales. Unfortunately, the modes of dynamic
activity cannot always be precisely defined [1]. Very often the rel-
evant information about a physical process is unevenly distributed
among a large number of signals, some of which are observable
and some of which are not. Finding the regularities or patterns that
repeat within measured data and quantifying the observed dynamic
changes becomes an important step towards the better understand-
ing of system functionality.

Hence, given a collection of signals measured from a physical
process, we want to analyze the system behavior in an unsupervised
manner. Thatis, we try to infer the dynamic structure of a physical
system from the properties of its dynamic trajectory without forc-
ing the use of specialized mathematical models that are both hard
to interpret and may not relate to reality. Generally, the system
inputs are unknown and prior knowledge about the internal system
structure is not available. One basic assumptionis that the physical
process resulting in the observed system outputs can be character-
ized by a dynamic trajectory in a suitable feature space. Then,
the trajectory is assumed to be traveling through several regions of
attraction and connecting transient paths as shown in Fig. 1a.

In this paper we present a method that results in a reasonable,
easy to interpret characterization of processes that are generated by
complex physical systems. Our method provides the initial model
based on simple output signal observations, application of unsu-
pervised pattern recognition techniques, flexibility in the inclusion
of heuristic knowledge at the later stages of development, and a
final form suitable for further analysis. ’

The rest of the paper is organized as follows. In Sections 2 and 3
we briefly overview the basic concepts of hidden Markov modeling
and temporal fuzzy sets, respectively. Building on this background
the hidden process modeling is developed in Section 4. A practical
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Figure 1. a) A dynamic trajectory X in two dimensional
feature space, F = F1 x F3, with three regions of attraction
centered at the poles «, B, and 4, that are indicated by
bullets. b) A membership function, u., indicates the level
of influence the region of attraction around pole o has to
the overall dynamics. It corresponds to a temporal fuzzy set
which models that region of attraction.

realization of the method is presented in Section 5 and applied to
the analysis of sleep dynamics. Finally, possible modifications and
implementation problems are discussed in Section 6.

2. HIDDEN MARKOV MODELS

If a real-world process produces a sequence of well defined sym-
bols, hidden Markov modeling (HMM) may be used in building a
signal model that explains and characterizes the occurrence of the
observed symbols. If such a model is obtainable, it can be used
later to identify or recognize other sequences of observations. The
HMM, as defined in [2], “is a doubly stochastic process with an
underlying stochastic process that is not observable (it is hidden),
but can be observed through another set of stochastic processes
that produce the sequence of observed symbols.” Namely, a HMM
breaks the physical process in two levels, as shown in Table 1.
The upper level (UL) contains a sequence of symbols {O,} that
is observable. The lower, or hidden level (LL) is based on the
assumption that at each time unit, the process behavior is gov-
emed by a single hidden state, ¢q;. The elements of the output
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Table 1. A HMM with ¢ = 4 hidden states, and a finite set of
admissible observation symbols, V' = {v1,v2,v3}. At each
time unit two random experiments are performed. One to
determine the output symbol given the current state, and the
other to decide about the possible state transition.

Observations(UL) [ v v ©v2 v2 -+ w3
Hidden states (LL) q4 4 M 0z} e Q@
Clock time (z) 1 2 3 4 ... T

sequence {O; } belong to a set of admissible observation values V'
that in general may be uncountable. A set of all admissible states
is Q ={q,...,qc}, where ¢ € N is the total number of states.

The success of hidden Markov modeling, particularly in speech
processing, is attributed to a fact that many real-world processes
seem to manifest a kind of sequentially changing behavior [2].
The properties of the process are usually held steady, except for
minor fluctuations, for a certain period of time, and then, at certain
instances, a gradual change to another set of properties occurs.
Unfortunately, in situations where the fluctuations within steady, as
well as transitional, periods are important for proper understanding
of system dynamics, the HMM approach may not be appropriate.
Moreover, in a number of practical situations, the steady periods
cannot be clearly separated into disjunct classes using the available
set of features which further obstructs the estimation of model
parameters.

3. TEMPORAL FUZZY SETS

Temporal fuzzy sets [3, 4] are the fuzzy sets {S] constructed from a
universe, elements of which are ordered in time. Every fuzzy set,
A, constructed from a temporally ordered universe, X, belongs to
this family. For example, consider a physical system governed by
an ordinary differential equation

de

— =Gt

= =G(t,z) M
where t € T = [to,00), # € RP, and G(-,-) is a real valued
vector function that is Lipschitz continuous on a rectangle I' C
T x RP, [6]. The unique solution of (1), given initial conditions
(o, 20) may be written as

and may not be obtainable in closed form. A vector function
X(-) in (2) represents the state space trajectory [6] of a physical
process govemned by (1). Considering the observation interval
7o = [to, t1], and using the dynamic trajectory X(-), one can
generate the universe of objects X* = X(7,) with elements . in
a temporal order. Given an arbitrary fuzzy set A on X*, the vector
function X(-) induces a fuzzy set B on T;, as suggestedin [5]. That
is, the membership function of B is defined to be

us(t) =pa(y), veX’ 3)

for all ¢ € 7, that belong to the inverse image of y. Using ‘<’
to denote a temporal order, we say that the resulting fuzzy set, B,
induced from the dynamic trajectory (X *, <), is a temporal fuzzy
set [4]. For clarity, A= is used to denote a temporal fuzzy set
induced from a fuzzy set A on (X*, <). The influence of the prop-
erties modeled by a fuzzy set Ain X * to the overall dynamics may
be quantified at each time instant, ¢ € 7,, with the membership
value g3 (t) = pa(x:). The membership functions of temporal
fuzzy sets are functions of time (see Fig. 1b). Whenever the uni-
verse of discourse is a dynamic trajectory, the temporal fuzzy sets
correspond to the regions of attraction [3, 4]. If the trajectory cor-
responds to a quasi-stationary process, the temporal fuzzy sets (and

Figure 2. A single dynamic trajectory with two regions of
attraction that are centered around the poles A and B. The
parts of a trajectory within the regions of attraction are not
shown. The transition links b-d are grouped into a transition
pathway P, while the link a is isolated.

regions of attraction) coincide with the stationary components [7].
Hence, the temporal fuzzy sets provide for the dynamic profile of a
physical process [3]. The membership functions of temporal fuzzy
sets may be estimated using the fuzzy partitioning algorithms [8]
as described in [3].

We construct temporal fuzzy sets in such a way that they char-
acterize the regions of attraction in a space where the trajectory
lies. In general, that is the feature space F, and the feature space
trajectory (X, <). The regions of attraction are then considered
the areas in space F, “visited” by the feature vector during pro-
longed periods of time and in a specific pattern or sequence. The
fragments of a trajectory that connect the regions of attraction are
called transition links. If several links are “close” to one another
they form a transition pathway. These concepts are illustrated in
Fig. 2. In general, regions and pathways can overlap. Hence, it is
often hard to distinguish one from the other. Pathways with a large
number of links may “look” like the regions of attraction.

4. HIDDEN PROCESS MODELING

A collection of temporal fuzzy sets, that may be obtained using a
fuzzy clustering algorithm [9], characterizes the dynamic activity
of a system and is composed of the membership functions and
cluster prototypes. Membership functions quantify the activity,
while the prototypes provide quantitative physical characterization
of the activity. Hence, one can think of the activity as a collection
of hidden processes that coexist at the same time but to different
degrees. That is the core of the hidden process modeling (HPM)
concept.

While in HMM the observation symbol at any time instant is
generated by a single crisp state, the HPM permits the same ob-
servation to be a joint product of concurrent dynamic tendencies.
The HPM approaches the observed physical process in a different
manner. Instead of forcing the process realization intoc a number
of discrete states with a collection of probability distributions that
describes the transitions and observations, we start by observing
the regions of attraction in a feature space. Then, each region is
characterized by a temporal fuzzy set, or a hidden process. At
any time, the hidden processes coexist to the degrees quantified by
their membership functions. Hence, the hidden states of a HMM
are replaced by the hidden processes.

The set of admissible symbols V' of a HMM is replaced by
the set of admissible values that a dynamic trajectory (X, <) can
take during the observation. A natural question is where does the
randomness go? There are at least three possible answers:

(i) the physical process may be considered deterministic;
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Figure 3. Raw signals are used to obtain the dynamic trajec-
tory in a feature space. As a result of fuzzy partitioning the
temporal fuzzy sets are induced in a form of dynamic profile
with the membership functions that quantify the activity of
hidden processes.

(ii) the membership values at each time constitute an outcome of
a fuzzy event, [10]. Fuzzy events in this case may be modeled
as fuzzy sets, [11], while the transitions between the fuzzy
events are random; and,

(iii) the HPM is reduced to a classical HMM by letting only one
hidden process exist at any given time, i.e. by restricting the
membership functions of temporal fuzzy sets to a binary range
{0, 1} and forcing them tq be crisp.

Assumption (i) is especially useful when prediction is not at issue,
that is when considering only the system analysis. While the third
possibility has been heavily explored under the name of hidden
Markov modeling, the prediction that follows from (ii) is still an
open research problem. One possible way of solving this problem
is suggested in [12]. In summary, given the relationship between
probability and fuzziness [13], and the way the temporal fuzzy sets
are constructed, one can consider the hidden process modeling as
a generalized hidden Markov modeling.

5. PRACTICAL IMPLEMENTATION

The hidden process modeling may be used mostreadily in analysis
of dynamic systems and their related signals. A block diagram
in Fig. 3 outlines a general template for implementing the HPM.
Although a number of fuzzy partitioning algorithms can be used in
estimating the membership functions 3], the fuzzy c-means (FCM)
clustering [9] is the easiest to implement, the best understood, and
the most studied in the literature.

The FCM algorithm minimizes the least-squares functional that
is given by a generalized within-groups sum of square errors func-

tion [14]:
In(U,2) =) > uldh, )

k=1 i=1

where U is a fuzzy c-partition of X with the elements u;x € [0,1],
each column summing to unity; z = (21, 22, ..., 2.) € R, with
zi € RP as the cluster center or prototype of the i class; d%, =
llzx — zi[f%, with || - || being any inner product induced norm on
RP; and weighting or fuzzy exponent m € (1, o). The optimum
is reached when the fuzzy partition matrix U* and a collection
of prototypes z* are found such that J,, is minimized. That is,
when the weighted within-groups sum of distances between the
samples and the prototypes is the smallest possible. The necessary

begin
Fixe,2<c< n;
Choose any inner product norm metric for R¥;
Fix m, 1 < m < oo; Initialize U;
for | := O step 1 until maxiter — 1 do begin
Calculate the ¢ cluster centers {z;} with (6) and U;
Using (5) and {z;} obtain Urew;
if |Unew — Uljoo < € then stop;
U = Upew;
end
end.

Figure 4. Pseudo-code for the fuzzy c-means algorithm.

conditions for minimization of J,,, can be written as

ek = —T‘m; 5)
and n
Z uRTk
z = £= Vi. (6)

=T
m
Uik
k=1

The singularities in (5) can be resolved as suggested in [14]. The
pseudo-code is shown in Fig. 4. When the samples originate from
a feature space trajectory, the membership functions of temporal
fuzzy sets are calculated as u*[k] = u;x, while the poles of at-
traction are characterized by the cluster prototypes z;, [3]. The
clustering validity issues for the case of temporal fuzzy sets are
discussed in [3].

In Fig. 5 we applied the HPM to model sleep dynamics from
electroencephalographic (EEG) signals. It has been observed that
the HPM captures the changes in sleep dynamics that cannot be
detected using traditional analysis [15]. The prototypes of the
temporal fuzzy sets (Fig. 5b) are calculated as the cluster centers
using (6) and a time-frequency based feature space [7).

6. CONCLUSION

In the hidden Markov models, by forcing system states to be crisp,
the information about actual dynamic activity is lost. The HPM
approach treats the physical systems differently. An important
advantage of the HPM comes from an observation that complex
dynamic processes are very likely to be composed of a large num-
ber of concurrent processes all of which are active at all times
but to different degrees. This is particularly true for physiological
processes, where often several systems act together to produce a
summary process. In other words, a HPM appears to be a natu-
ral tool in such situations. Another advantage of the HPM is that
data fusion may be easily accomplished by extracting the features
from different signals and then estimating temporal fuzzy sets from
the fused feature space. Expert knowledge about the problem can
be embedded within the fuzzy partitioning scheme to constrain
the way the temporal fuzzy sets are estimated. Furthermore, the
HPM is a basic step towards a more general methodology of signal
analysis in fuzzy information space (12], where the membership
functions of temporal fuzzy sets are used as a time-series that ex-
tracts the most significant information about the dynamic behavior
of a physical process.

In practical applications, however, the estimated hidden process
may not always correspond to a single physical process. It may
stand for a combination of processes or may capture only the most
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Figure 5. A typical dynamic profile for the first hour of normal sleep (At = 3s). a) Top graph contains the traditional (crisp) sieep
onset obtained when the nearest maximum membership (NMM) operator [14] is applied on the fuzzy partition matrix. Bottom
four graphs show the estimated membership functions of temporal fuzzy sets (hidden processes). The change in dynamics
within the first seven minutes of sleep could not be detected with the crisp solution, but was completely captured with hidden
process model (e.g. u* and u3¥). b) Cluster prototypes for the temporal fuzzy sets (hidden processes). These prototypes
estimate the normalized spectra corresponding to the poles of attraction.

prominent features of a more complex process. How well the
hidden processes fit the real physical activities within complex
systems will mostly depend on a selection of the feature variables
and the way membership functions are estimated [3].
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