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ABSTRACT

The eigenfilter is an FIR filter that maximizes signal-
to-noise ratio (SNR). It typically consists of the eigenvector
associated with the maximum eigenvalue of the data co-
variance matrix. Alternately, the eigenfilter may incorpo-
rate a linear combination of the dominant covariance matrix
eigenvectors. Expressions for the eigenfilter SNR gain are
derived. An algorithm for adaptive eigenfiltering is then de-
scribed which has a computational complexity of O(M d2)
where M is the eigenfilter length and d is the signal covari-
ance matrix rank. The algorithm is demonstrated via sim-
ulations to out-perform a well-known subspace averaging
algorithm having similar computational complexity. The
eigenfiltering algorithm is then used to obtain estimates of
the single trial steady-state visual evoked potential.

1. INTRODUCTION

The steady-state visual evoked potential (SSVEP) is elicited
using a periodic visual stimulus and has a variety of clinical
applications [1]. It is usually measured using the ensemble
averaging method, which averages an ensemble of SSVEP
responses that are time locked to the stimulus. This method
is based on the premise that the underlying signal and noise
are deterministic, an assumption generally regarded to be
unrealistic. More sophisticated estimation techniques have
been devised over the past two decades, however these are
primarily for the estimation of transient EP’s. In this pa-
per, we propose the use of an adaptive eigenfilter (AEF) to
improve the signal-to-noise ratio (SNR) of the SSVEP. The
AEF utilizes an adaptive FIR filter to maximize SNR with-
out any knowledge of the statistical properties of the signal
and noise components [2]. Adaptive filters have been used
to estimate transient EP’s [3]. They have also been used in
an adaptive line enhancement (ALE) configuration for the
estimation of the SSVEP [4]. A comb filter, tuned to the
stimulus frequency and its harmonics has also been used to
estimate the SSVEP [5]. Unlike comb filters, the AEF is
optimized to maximize the SNR. of the SSVEP and hence is
useful in objective sensory thresholding applications which
require detection of low-level SSVEP signals.

2. EIGENFILTERING OF COMPLEX
SINUSOIDS

It is well known that the eigenfilter is the eigenvector asso-
ciated with the maximum eigenvalue of the covariance ma-
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trix of the data vecior [2]. The data vector 1s the M x
1 vector comsisting of the M most recent data samples,
znz[z(n) z(n - 1) z(n—M+1) ]T. It is as-
sumed that the measured SSVEP signal consists of a sig-

nal, s(n), in additive noise z(n) so that z, = s, + zn
where s, = [ 3(n) s(n-—-1) s(n—-M+1) ]T and
Zn = [ z(n) z(n-—-1) zZ{ln— M +1) ]T Hence, in

order to maximize the SNR, E [(w sn) ]/E [(w z,,)ZJ

the eigenfilter w becomes the eigenvector associated with
the maximum eigenvalue of the covariance matrix R®
E[znzf). We will consider the general eigenfilter, w
E?:l Bi¢' where g',...,q% are the eigenvectors of R* cor-
responding to eigenvalues A’ > ... > A9, respectively. The
SNR gain that can be obtained via eigenfiltering is ana-
lyzed for the case of complex sinusoids in white noise. The
sinusoidal signals are assumed to be given by

d

z(n) = Z pkel(wk"+¢k) + z(n)

k=1

(1)

where the px are real constants and the ¢; are random
phases. The covariance matrix of z, is given by [6]

9

R* =R’ 4+ olly (2)

where R* = £PEY, £ = [ & ed |, P = diag

(p3,03, ..., %), and ei = [ 1 (M- T 4
.,d. The SNR of the eigenfilter output is given by

eJwi

wlEPEH
d
o3 Zk:l 'ﬁ"l2

The constants Bk in (3) can be chosen in a number of dif-
ferent ways, depending on the degree of SNR gain ver-
sus the desired amount of “equalization” or enhancement
allotted to each sinusoidal frequency. Clearly, choosing
Bi =0, 1 .,d maximizes the SNR at the pos-
sible expense of a loss of equalization. Throughout the
remainder of this paper, the §; are the first elements of
the signal subspace eigenvectors, hence the eigenfilter ef-
fectively corresponds to an orthogonal projection onto the
signal subspace, that is, the eigenfilter output is the first
entry of P,r, where P, is the projection matrix onto the

H
signal subspace, P, = [ ¢ .. ] [ T
Hence, the eigenfilter output is perfectly equahzed The
SNR of the eigenfilter output is therefore

o)

2 Ak
SNRou: = e 1B+ (

Ek 1 wklz

SN Roy: = (3)

(4)

0-7803-2431-5/95 $4.00 © 1995 IEEE



An equivalent expression is obtained by using the fact that

Pssn = 8n,
d 2
Ek:l Pk

d
0'% Zk:l I'Bklz

Comparing (5) with the expression for the eigenfilter input

SN Rout = (5)

) . zd 2
SNRin = £xk=1 Pk (6)
Oz

it follows that the eigenfilter increases SNR to the extent
that Z:=1 |8x* < 1. Fig. 1 shows SNR gain as a function
of Aw=w) —wy ford=2,M =16, p} = 2, and p2 = 1. For
the case of a single complex sinusoid, it suffices to set 8; =
1. The signal component of the eigenfilter output is then
given by the maxxmum eigenvalue of EPEH | or equivalently
by its trace, Mp%. The eigenfilter SNR is therefore,

Mp}
2

oz

SNRout =

(™)
giving an SNR gain of M.

3. FAST ALGORITHM FOR ADAPTIVE
EIGENFILTERING

The proposed algorithm recursively computes estimates of
the d dominant eigenpairs, (g5, A* &n), i =1, d) of the
sample covariance matrix R,y = ico s 0< g <
1. The algorithm updates the estimated eigenvectors as

Zak(n)qn_l + Z ak(n)zn_k+d+1, i=1,...d
k=d+1
| | (®)
where the a}(n) are chosen so that §;, maximizes the Rayleigh
quotient associated with R, when ¢ = 1. For i > 1 the
@j(n) can be obtained without deflation. The motivation
underlying this eigenvector update is that when there is zero
noise in the data, the true eigenvector is obtained after only
one update since Tn...ZTn-d41 span the signal subspace [6].
This update can be reduced to a 2d-dimensional generalized
eigenvalue problem. Define the matrix

Qn =‘[ gno1 ... Gaci Za xn—d+1] 9)

so that )
gn=Qnay, t=1,...,d (10)
. . . T .

where ay, = [ aj(n) az4(n) ] . The Rayleigh quo-
tient to be maximized over al, is given by
o QF RaQnasj,

aHQE Quat,
Hence, the problem of updating §:,_, is reduced to comput-

ing a 2d-dimensional generalized eigendecomposition and
the o, ...ad are the generalized eigenvectors solving

#(Rn,Qna}) = i=1...d (11)

Aa}, = X (n)Bal, (12)

where A = QZR,.Q., B = QHQ,,, and A'(n) is the gener-
alized eigenvalue. Since the a}, are conjugate with respect

to Qn (i.e. aEQH Qnaj, =0, 1 # j), it is easy to see that
the updated eigenvectors ¢, ¢ = 1,...,d will be orthog-
onal. Moreover, they will also have the desired mmmax
properties. Suppose that ¢ = Qnol is an estxmate of ¢*, it
follows that 42 = Qra? will be an estimate of ¢° given that
a? gives the largest generahzed Ra,ylelgh quotient (11) sub—
ject to the constraint that a2 be QF Qn-conjugate with al.
This argument can be inductively applied to the remaining
eigenvector estimates.

It remains to show that the matrix-vector products in
(11) can be efficiently computed. Consider first the matrix-
vector products Rz, through R,z,_441. These products
can be efficiently carried out in O(M) operations by ex-
ploiting the shift-invariant property of R,. An algorithm
for doing this has been described in [7] and is listed in Ta-
ble 1. The remaining matrix-vector products in (11) are
Rndn-1, i = 1,...d. These can also be updated in O(M)
operations. Assume that at time n, R,_i§;_, and o}_;
are available for t =1,...,d. Then

R"é:l—l = [ERn 1+ Taz, ]Qn—]an_l (13)
Substituting for Q,—; then leads to

Rn‘f;-x =f[ Rn—l‘f&;-z
. Rn—lzn—d

) Rn—léi-z_ Rn_ 120y
] ahoy + Tz §ho;

(14)
where it has been assumed that of,_; has been scaled so
that §’,_; has unit norm. Since the only matrix-vector mul-
tiplications in (14) involve Rn—1Zn—1... Rnc1ZTn-a, updat-
ing Rngn_y, 1 =1,...d can be carried out in O(M) opera-
tions. A detailed algorithm listing is given in Table 2, note
the total operation count is only O(Md?). The algorithm is
related to O(M?*d) methods based on the idea of subspace
iteration followed by a Ritz acceleration step (SIR) [8] and
is hence referred to as the Fast Subspace Iteration with Ritz
Acceleration (FSIR) method. The FSIR method can there-
fore be expected to yield performance similar to that of the
O(M?*d) complexity SIR-type algorithms.

4. EXPERIMENTAL RESULTS

First, the proposed FSIR algorithm was compared with the
O(Md?) subspace averaging (SA) algorithm of Karasolo [9].
The number of complex sinusoids was set tod = 2 with M =
20, w; = 0.6m,w; = 0.87,£ =0.99,p1 = p, = 1,and 0% = 1.
Each sinusoid was assigned a uniformly distributed random
phase. At time n = 300, the frequencies were changed to
wy = 0.67, w2 = w. The squared error norm

e(n) = —H o d]-[a &L a9

was computed over 1000 iterations and averaged over 50
independent trials. The true eigenvectors g. and ¢> were
computed from R, directly using the Matlab routine “svd”.
The results are shown in Fig. 2. The FSIR algorithm is seen
to have a faster rate of convergence and a lower steady-state
error than the SA algorithm.

The eigenfilter, computed via FSIR, was then applied
to two sinusoids with p? = 2,02 = 1, M = 16,02 = 1,w, =
0.47,wy = 0.647,& = 0.99, and 02 = 1. At time n =

2928



300, the frequencies were changed to w; = 0.47, and w; =
7. The estimated SNR versus iteration number is shown
in Fig. 3 for the eigenfilter input and output, along with
the theoretical SNR as predicted by (5) and (6). Close
agreement between estimated and theoretical SNR is seen.

The EEG was recorded from the Oz site referenced to
Fp2 while the subject sat watching a Grass PS22 photic flash
stimulator running at 10 flashes/second. The EEG was am-
plified and filtered to 75Hz and then sampled at 200Hz over
a 10 second interval. The FSIR AEF filter length was set to
M = 150 with ¢ = 0.9998 and B; = 1,8 = 0,k > 1. The
SNR for the unprocessed and enhanced data was estimated
by computing the “area” of the signal and noise portions
of averaged periodograms of the AEF input and output.
The results are shown in Table 3 for the FSIR eigenfilter, a
block-processed eigenfilter (10s block), and an adaptive line
enhancer (M = 150, p = 10™*)[2]. This choice of LMS con-
vergence parameter p provides the same adaptation rate
as the FSIR AEF [7]. It can be seen that the eigenfilter
produces a higher SNR gain than the ALE. Averaged pe-
riodograms for the eigenfilter, and ALE are shown in Fig.
4.

5. SUMMARY

An algorithm for efficiently tracking signal subspace eign-
evectors of sinusoidal data was described. The estimated
eigenvectors can be incorporated into an adaptive eigenfilter
for maximizing SNR. The eigenfilter was used to estimate
steady-state visual evoked potentials.
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Figure 1: SNR gain versus Aw for d = 2.
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Figure 2: Eigenvector error norms for the proposed FSIR al-
gorithm and Karasolo’s subspace averaging (SA) algorithm.
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operation count

Forn=1,2,...
tTh=frp1+z(n— M)z, 3IM
Tn = EFn-1 + z(n)zn M

r(n) =¢ér(n—1)+z(n)* 3

[9o), = r(n)y(n) + Frlyn—1  2M +2

[5612,M+1 = Fny(n) + gn-1  2M

gn = [Go)y pr —Ty(n — M) 2M.
12M +5

Initial Values :
go = Oamrxa
r(0) = 0.01
ro = Omxa
7-'0 = OM x1

Table 1: Algorithm for updating gn = Rnyn showing num-

20

PSD (dB)

-60

Algorithm | SNR Gain (dB)
FSIR AEF 8.5
Block AEF 9.0
LMS ALE 6.1

Table 3: SSVEP data SNR estimates.
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Figure 4: SSVEP PSD estimates for the proposed FSIR
eigenfilter and an LMS-based ALE.
operation count
Forn=1,2,...

update Rozn_i, i=0,...,d—1 (see Table 1) 12Md + 5d

U = [ Rn—l 631—2 e Rn—lé:—Q Rn—l Tn—1 Rn-—l ITn—-d ]

0 =ai_, /8 n-1), i=1,...,d 24°

v=gHe_,, i=1,...,d 2Md

RoGhy =EU8 42,9, i=1,...,d 4Md* +3Md

form the matriz A (see (11) — (12)) AMd* +2Md

form the matriz B (see (11) — (12)) 4Md® + 2Md

Solve Aat, = A'(n)Bal, i=1,...,d 0(d%)

Qn = [ g1 §a-1 - da-1 Ta Tnol ... Tnedp ]

i =Qnal, i=1,...,d aMd’

8(n) = (@:74a)"?, i=1,....d 2Md +d

dn = Gn/6'(n) ,i=1,...,d Md

Initial Values :
i1, 1=1,...,d: random, orthonormal
Rogl,=001xg",, i=1,...,d
(0)=1, i=1,...,d

a6=[0 ... 01 0 ... O]T, 1 in the i*® position

16Md? + 24Md
+2d* + 6d + O(d®)

Table 2: Algorithm for updating §i_;, i = 1,...,d, show-
ing number of operations. The d x d block matrix in B
corresponding to §:X, §},_; can be replaced by the identity
matrix, [g.
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