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ABSTRACT

We discuss the advantages and disadvantages of using a
Karhunen-Loeve (K-L) expansion of a training set of im-
ages to reduce the number of encodes required for a Mag-
netic Resonance (MR) image of a new object. One form
of this technique has been proposed [1] and another imple-
mented [2]. We evaluate the error likely to be achieved as a
function of the number of encodes and some two technical
problems: reduced SNR in the images and smoothing of the
K-L functions in practice.

As an alternative, we propose the use of joint best bases
(3] derived from the local trigonometric Library as an ap-
proximation to the K-L basis. These bases approach the
rate-distortion characteristic achieved by the K-L basis, but
they are easier to use in MRI and can be applied with ex-
isting methods for fast acquisition.

1. INTRODUCTION

Magnetic resonance (MR) imaging has become an essen-
tial tool in clinical medicine, producing exquisite contrast
between soft tissue structures without the use of contrast
agents. The major drawback is the time required to ac-
quire the images. Depending on the contrast in the images,
acquisition requires from a second or two to half an hour.
An enormous amount of effort has been put into acquir-
ing images faster. Faster imaging has opened many new
and exciting applications such as cardiac imaging and func-
tional imaging of the brain. The latter permits one to study
evolving activity in areas of the brain during memory and
motor tasks.

Techniques such as gradient echo imaging, echo planar
imaging, RARE, and BURST produce images faster by in-
creasing the rate at which data is acquired. There are lim-
itations to these techniques: the image contrast can be ad-
versely affected and expensive hardware modifications are
required for some.There have also been a few techniques
that attempt to reduce imaging times by using a priori in-
formation to reduce the amount of data required {1, 2].

This paper describes and analyses fast imaging methods
of the latter type, based on reducing the number of encode
steps required to image objects from a certain class. This
reduction is obtained by encoding with waveforms adapted
to the covariance structure of that class.
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2. BACKGROUND

We now review MRI, then synopsize some of the basic prop-
erties of joint best basis algorithm. For more on MRI one
might refer to [4]; for details of the joint best basis algo-
rithm and local trigonometric bases one might consult the
recent book [3] and the references within.

2.1. Magnetic Resonance Imaging

In an MR scanner, information about an object is obtained
in radio frequency (RF) signals generated by the stimulated
precession of nuclear magnetic moments in a portion of the
object. In common imaging techniques, a collection of such
signals are used to build a map of the hydrogen density in
a two-dimensional slice of the object. By careful control of
the magnetic environment of the object, samples taken at
intervals throughout the duration of a signal can be inter-
preted as measurements of the spatial Fourier transform of
the object’s hydrogen demsity taken along a curve in the
spatial frequency plane. Commonly, many signals are ob-
tained in order to obtain a dense enough sampling of the
Fourier transform to enable construction of an image of the
object.

The usual approach to imaging, spin warp imaging, be-
gins by stimulating the nuclei in a restricted region of the
sample, usually a thin planar slice. After this selective exci-
tation, the variation of density of the excited nuclei within
the slice is mapped by a sequence of manipulations of the
magnetic environment. This sequence must be repeated
many times to gain enough information to image the den-
sity. The signals produced look like

Si(t) = /dz/ dy p(z,y) glast gt Ay 0<t<T, (1)

with p(z,y) the hydrogen density, o, are constants de-
termined by the magnetic environment, and the integral is
taken over the coordinates of the slice being imaged.

Each signal gives us one line of the slice’s spatial Fourier
transform, p(ws = at,wy =8) 0 < t < T, parallel to the
wz spatial frequency axis. A technique called phase en-
coding permits us to determine which line we measure, i.e.
the value of I3. In many imaging situations, the spins in
the sample must be allowed to “rest” for time after line is

‘measured. The time between measurements can be long,

resulting in long imaging time.
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In this paper, we describe a technique which speeds
imaging by encoding with a basis of spatial amplitude pro-
files on the spin system. These are chosen to exploit the
known correlations among the members of a given class of
images. In this method, phase encoding is replaced by a
second selective RF pulse that excites a specially shaped
excitation profile along the encoded axis; the general idea
has been described in [4]. The signal produced is the inner
product of the excited profile and the spin density along the
encoded axis:

Sj(t)=/dx/dy p(z, y)p; (y)e' ™™ . (2)

Here we have chosen to encode the y axis with an amplitude
profile given by the j'th element of a basis {¢; }f;, . Any axis
could be encoded in the same way. We can then reconstruct
the the projection of the spin density onto the encoded axis
from these measurements in the usual fashion.

A Hadamard basis was the first used [5]. Since then,
wavelet [4] and wavelet packet bases [6] have been proposed
and implemented {7, 8].- There is a trade off between the
signal to noise ratio (SNR) in the image and the speed with
which the image can be acquired. If all the spins are excited
by each RF pulse, the SNR is improved but the acquisition
speed for given image contrast is reduced and artifacts are
more pronounced [6].

1

MR Encoding with Joint Best Bases

In this paper, we will need to find a basis of profiles adapted
to the statistical regularities of a particular class of images.
The goal is to find a basis which captures most of the vari-
ability of the images within the first few basis elements.
More specifically, we are interested in parsimonious repre-
sentations in this basis, in the sense that truncated image
expansions in the basis should have minimal expected mean
square error. A natural choice would be the Karhunen-
Loeve basis, which has precisely this characteristic prop-
erty.

An alternative to the K-L basis has been proposed by
Wickerhauser. In this paradigm, the K-L basis for a given
class of signals on an interval is approximated from a large
collectiom of simple bases, such as the local trigonomet-
ric library associated with a family of partitions of the
interval[3]). The approach suggested utilizes a fast search
over a tree structured library of possible bases to quickly
find the best approximate K-L basis.

As a library of bases for a fast approximate Karhunen-
Loéve transform, one might choose a wavelet packet library
or a local trigonometric function library. Each basis of one
of these libraries corresponds to a particular partition of
the associated domain, time for the local trigonometric and
frequency for the wavelet packet. Given a specified partition
(the search partition) of the domain into a power of two
number of subintervals, a fast binary tree searching strategy
exists for finding a best partition (basis) in a collection of
subpartitions of the search partition. We use a more general
dynamic programming tree searching strategy to find a best
partition over the entire collection of subpartitions of the
search partition. [9]

For the approximate KL transform, we seek a basis
which minimizes the volume of the variance ellipsoid for
the ensemble. The volume is equal to the product of the
diagonal elements in the autocovariance matrix. The best
basis search itself uses the variance of the coefficients to
evaluate a suitable cost function, namely the sum of the
logs of the variances. The search complexity is O(N?). By
eliminating some of the choices for where the left-most par-
tition point may occur, faster searches are possible. As an
example, one may limit the length of the left-most interval
to be a power of two. In this case, the search complexity re-
duces to O{N?). One may further reduce this to the binary
tree method by deleting futher intervals.

3. FAST ENCODING WITH K-L AND
APPROXIMATE K-L BASES

Selective excitation in the y-direction, as in equation (2)
above, can be used to reduce the number of excitations
and therefore the acquisition time required to obtain an
image from a known class of images. We study excitation
profiles from the K-L basis associated with the image class,
as well as approximations of these from local trigonometric
libraries.

Cao and Levin studied the problem of finding an op-
timum set of phase encodes to estimate the first elements
of the Karhunen-Loeve (K-L) basis from a training set of
similar images. This reduced set of phase encodes was used
to acquire an approximate image with a reduced data set
[1]. Cao and Levin also suggest that the direct measure-
ment of the K-L coefficients will improve the performance
of their technique. The first elements of the K-L basis has
also been used to estimate changes in the repeated acqui-
sition of the same image [2]. The original image is used
to generate the K-L basis so the reconstruction should be
accurate with very few coeflicients.

We studied direct measurement of K-L coefficients by
selective excitation of K-L basis functions in the y-direction,
evaluating performance on some typical image classes. K-L
encoding has several technical limitations: the accuracy of
the profiles excited by the selective RF pulses are limited
by the length of the RF pulse. This makes excitation of
the K-L basis functions difficult and of limited accuracy.
In addition, the SNR of the images acquired with the K-L
basis suffers compared to that in standard images.

To alleviate some of the technical problems, we suggest
the direct measurement of the coefficients of an alternative,
approximate K-L basis, obtained by searching a library of
localized trigonometric bases, as described in the previous
section. Localized trigonometric functions are much easier
to use in MRI because the envelope is excited and the phase
can be added accurately with gradients. Several coefficients
can be obtained from one excitation by acquiring several
phases with different phases across the profile.

3.1. Karhunen-Loeve basis from training images

We studied K-L encoding for a number of standard image
classes; each class is a collection of trans-axial head images
taken at a given height. All images came from standard
scans in daily clinical studies. Only studies with no gross
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pathology were used. The T weighted images from 8 stud-
ies were extracted and used as training set for the K-L ex-
pansion. A 9th was used as a test image to measure the
error in the reconstruction.

The 8 images in the training set were used to generate
K-L basis for the class. The variation in positioning and
in anatomy likely to be seen in clinical practice was ap-
proximated with this data set, although a much larger data
set would be required to generate a basis for the variety of
pathology seen in clinical practice.

The training matrix, X, contains the 8 normalized train-
ing images as 256 x 256 submatrices, each image comprises
a set of 256 rows in the 2048x256 image matrix. X can also
be seen as the collection of 2048 vectors; each vector repre-
sents a line in the image that will be encoded with the K-L
basis. The K-L basis vectors are the eigenvectors of X X°.
The eigenvectors are ordered so the associated eigenvalues
decrease in size.

The K-L profiles {1;}32% obtained by this process are
used as amplitude profiles in MRI. These profiles are excited
by a selective RF pulse in the y-direction; the acquired data
are frequency encoded in the x-direction to produce the sig-
nal described in equation (2) above. The x-direction inverse
Fourier transform of the acquired data yield the K-L coef-
ficients for each line in the image.

The form of the sample covariance matrix reflects the
fact that two of the three dimensions are efficiently encoded
in MRI, so we are only concerned with the covariance in
the third dimension. We are essentially performing a one
dimensional principal component analysis.

The error in the estimates of test images at multiple
levels were computed as functions of the number of coeffi-
cients. Figure 1 plots the error energy as a percentage of the
total energy in the image for the best and worst slices. For
the test image at level 14, where the image plane is superior
to the ventricles, the error energy is below 1% with 45 coef-
ficients and below 0.5% with 62 coefficients. For all image
planes, the error energy is below 1% with 100 coefficients
and below 0.5% with 127 coefficients.

The SNR in images acquired with a K-L basis is lower
than in conventionally acquired images, even if a complete
set of encodes are used, by a similar analysis to that in [6].
The reduction in SNR we have seen for K-L bases averages
to a factor of around three and a half. A second technical
factor that should be considered is the RF pulse length re-
quired in exciting K-L basis functions. The profile excited
by an RF pulse is approximately the Fourier transform of
that RF pulse. Therefore, long RF pulses with wide band-
widths are required to excite profiles with sharp edges. The
K-L basis functions we have seen have many sharp edges. In
actual practice, the edges of these basis functions will not be
present in the function actually excited, due to limitations
on RF pulse length. These bandlimited profiles increase the
error in the reconstructed test images significantly .

3.2. Approximate Karhunen-Loeve Encoding

We have explored using alternative, approximate K-L bases
chosen from a library of localized trigonometric bases, as
discussed in Section 2 above. Encoding with local trig bases
sidesteps some of the technical limitations associated with

K-L encoding. In particular, the basis functions have a
simple envelope with a linear phase. This offers two big
advantages. First, the basis functions do not have sharp
discontinuities so they can be accurately excited with sim-
ple, short RF pulses. Secondly, the linear phase can be
obtained with phase encoding gradients. This allows the
same techniques developed to reduce the number of excita-
tions in phase encoding to be applied. In particular, several
phases across the same envelope can be acquired from one
excitation with the RARE technique.

The joint best basis algorithms discussed previously can
be used on the training images to obtain a localized trigono-
metric basis that approximates the mean squared error of
the K-L basis. The joint best basis search is applied to the
2048 rows from the 8 images contained in the training ma-
trix X. The interval to be encoded is initially partitioned
into 16 intervals of equal length; the resulting collection of
local cosine bases is searched by the dynamic programming
algorithm outlined in section 2. The result is a local cosine
basis associated with a particular of partition of the encod-
ing axis. Figure 2 shows this partition superimposed on one
of the test images. It also shows a sequence of reconstruc-
tions of that image from partial data.

For our purposes, the important property is that the
best basis concentrates the variance of the training set quite
well into its first few components. Figure 3 compares the
best basis to the original representation (dirac basis) with
respect to this property.
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Figure 1. Error in reconstruction of test images as a function of K-L coefficients used. Results are given for the
best and worst image classes.
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Figure 2. Reconstructions of a test image encoded with approximate K-L basis. White lines designate the partition
corresponding to the approximate K-L local cosine basis.
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Figure 3. Variance captured as a function of coefficients measured in K-L, approximate K-L, and dirac bases.
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