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ABSTRACT

In neuromagnetic source reconstruction, a functional
map of neural activity is constructed from noninvasive mag-
netoencephalographic (MEG) measurements. The overall
reconstruction problem is under-determined, so some form
of source modeling must be applied. We review the two main
classes of reconstruction techniques—parametric current
dipole models and nonparametric distributed source recon-
structions. Current dipole reconstructions use a physically
plausible source model, but are limited to cases in which the
neural currents are expected to be highly sparse and local-
ized. Distributed source reconstructions can be applied to a
wider variety of cases, but must incorporate an implicit
source model in order to arrive at a single reconstruction.
We examine distributed source reconstruction in a Bayesian
framework to highlight the implicit nonphysical Gaussian
assumptions of minimum norm based reconstruction algo-
rithms. We conclude with a brief discussion of alternative
non-Gaussian approachs.

1. INTRODUCTION

In magnetoencephalography (MEG), the minute magnetic
fields generated by neural activity are measured at the sur-
face of the head by superconducting quantum interference
device (SQUID)-based gradiometers [1]. Neuromagnetic
source reconstruction is the process of deducing the sources
of these fields in order to produce a functional mapping of the
brain. MEG is attractive because the millisecond temporal
resolution of the measurements. This high resolution enables
the analysis of dynamic brain processes such as evoked
responses. Alternate functional imaging modalities such as
positron emission tomography (PET) and functional mag-
netic resonance imaging (fMRI) cannot provide comparable
temporal resolution.

The difficulty in using MEG for functional mapping lies in its
inverse problem. The general neuromagnetic source recon-
struction problem—determining the three dimensional neu-
ral current distribution from the head surface magnetic
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field—is under-determined [2]. To address this problem,
prior assumptions must be made about the neural source con-
figuration.

Two distinct approaches have been used in dealing with the
basic indeterminacy of the inverse problem. The first, and
most wide spread, is a parametric, model-based approach in
which the neural currents are assumed to be sparse and local-
ized. The currents in each active region of the brain are mod-
eled by a current dipole or low order multipole. Locations of
the brain’s active regions are found via a least squares fit of
the nonlinear source model to the measurements. These tech-
niques can provide accurate source mappings with resolu-
tions in the millimeter range when the modeling assumptions
are met. Model-based approaches are also amenable to array
processing algorithms such as MUSIC [3] and statistical per-
formance analyses such as Cramer-Rao error bounds [4].

A second, nonparametric approach to MEG source recon-
struction has arisen in an attempt to handle cases with more
distributed source currents—source configurations that may
not be sparse and localized. By applying sampling theory, the
overall reconstruction problem can be discretized and
reduced to computing currents in a set of fixed volume ele-
ments (voxels) in the brain. This approach is much less
restrictive than dipole source modeling. And the resulting
linear form permits straightforward incorporation of anatom-
ical constraints and an easy comparison to PET and fMRI
results.

Although the formulation is linear, it is highly under-deter-
mined. The challenge in this approach is to pick a single
reconstruction out of an infinite set of possibilities. Distrib-
uted source reconstruction methods make this decision by
applying a quality metric to the solution. The metric repre-
sents an implicit model of the source configuration. Metrics
have included solution norms (e.g. minimum norm solutions)
[5,6] and sparseness measures (e.g. minimum source solu-
tions) [7,8].

In this paper, we review both approaches to MEG source
reconstruction. We examine distributed source reconstruc-
tion in a Bayesian framework to highlight the implicit non-
physical Gaussian assumptions of minimum norm based
reconstruction algorithms. We conclude with a brief discus-
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sion of non-Gaussian models which can potentially capture
the advantages of both approaches.

2. BASICS

The relation between the primary neural source currents
inside the head and the resultant magnetic field strength out-
side of the head can be expressed as [2,9,10]
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where b (§,r,t) is the magnetic field component in the §
direction at location r outside the head, j (', t) is the pri-
mary current density at #' inside the head, g(s, r, r') is the
magnetic lead field, V' is the volume inside the head, and ¢
is the time index. The magnetic lead field g relates the pri-
mary current density (the current directly resulting from neu-
ral activity) to the resulting external field and includes the
effect of the ohmic “return currents” [9]. The form of g
depends on the head geometry and conductivities. For the
radial component of the magnetic field outside of a head
modeled as a sphere with spherically symmetric conductivity
[2], the lead field is
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where p  1s the permeability of free space. For realistic head
models, g must be computed numerically [1].

Using (1), an MEG measurement i can be expressed in the
basic form

b0 = [ g@)-ir,0dv 410, (3)
4

where n(t) represents measurement error or noise. And
8,(r') is derived from a linear combination of lead fields that
accounts for both multiple gradiometer coils and finite coil
area [10].

In the general case, knowledge of the external magnetic field
is insufficient to reconstruct the primary current density. This
is because there exist “silent,” nonzero distributions that pro-
duce no external magnetic field, i.e.
Ivg(f, r,r)-j@)dv = 0 for all § and r. Of course any
two current distributions that differ by a silent distribution
will produce exactly the same external magnetic field. The
ambiguity can be further compounded by the finite number
of measurements available.

3. DIPOLE SOURCE MODELS

One approach to resolving the ambiguity in neuromagnetic
source reconstruction is to represent the primary current den-
sity by a physiologically plausible parametric model. In

cases where the neural activity is expected to be localized—
restricted to a small number of regions of the brain—point
source current dipole models are widely employed. In this
approach, the neurally-driven primary current density j is
modeled as a small set of ! current dipoles

!
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where j, is the dipole moment and § is a Dirac impulse.
From (3), the measurements can be expressed as

!
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For m measurements, the problem formulation is
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Using (5) or (6), neuromagnetic source reconstruction
reduces to finding the unknown parameters / —number of
dipoles, r, —dipole locations, and j, —dipole moments.
Typically [ is small enough so that the number of parameters
is far less than the number of measurements. As a result, the
parameters can be estimated using nonlinear least squares
and/or subspace projection techniques [1,3].

Dipole models also have a mathematical interpretation as the
leading term in a multipole expansion (vector Taylor series).
If the measurements are made at a distance that is much
greater than the spatial extent of the source, then the dipole
term will dominate. Judicious use of low order multipole
terms in addition to the dipole can allow parametric models
to handle less sharply localized neural sources [11].

4. DISTRIBUTED SOURCE MODELS

If the primary current density j is sampled spatially with ade-
quate resolution, then it can be expressed in terms of its [
voxel samples j, as

{
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where @, are the set of basis or interpolation functions asso-

ciated with the sampling. Substituting into (3) and inter-
changing the order of the summation and integration yields
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Defining g, to be the integral inside the parentheses, (8) can
be expressed as

{
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For m measurements, the problem formulation is
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Note that the dipole model (5) is a special case of (9) where
the basis functions are Dirac impulses. A critical difference
however, is that in the dipole model the number of “samples”
(1) is small and both the number of samples and their loca-
tions are unknown parameters. In (9) the number of samples
and their locations are known a priori. As a result, neuro-

magnetic source reconstruction reduces to finding the voxel
values j, which are linearly related to the measurements.

Although the problem has been cast in a linear form, the
underlying ambiguity still remains since the number of vox-
els is generally much larger than the number of measure-
ments. A number of ad hoc techniques have been proposed to
deal with this. Each of these approaches has in some way
replaced the explicit assumptions of the dipole model with
implicit assumptions that are often buried within the recon-
struction algorithms. In the next section we cast distributed
source reconstruction in a Bayesian framework and use this
interpretation to examine the underlying assumptions of dif-
ferent approaches.

5. BAYESIAN FRAMEWORK

To overcome the structural ambiguity of (10), prior informa-
tion must be incorporated in order to pick a single reconstruc-
tion from the infinite set of primary current distributions
consistent with the measurements. A Bayesian framework
provides a formal way in which to incorporate nonparametric
prior information. From (10), dropping the time index, the
measurement model is B = GJ+ N . Both J and N are
treated as random vectors and prior information about them
is represented as the probability density functions (pdf) p(J)
and p(N).

The additional knowledge of J provided by the measure-
ments B is then represented by the posterior conditional pdf
p(J|B) . By Bayes rule

_ pBIpY)
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The neuromagnetic source reconstruction is then derived as
an estimate of J based on p(/|B) . The maximum a posteri-
ori (MAP) estimate is the most probable current distribution.

J= arg‘rlnax [p(J|B)] . (12)

The MAP estimate can be derived from the log of the poste-
rior pdf [12].

J= arginax [Inp(B|J) + Inp(J)] (13)

From (13) it is clear that the MAP estimate strikes a balance
between consistency with the measurements (first term) and
consistency with prior knowledge of the neural current distri-
bution (second term).

If both J and N are independent and normally distributed,
then the MAP estimate is

j= argmax [-B-6n"cy (B-6)) (14)
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where M 7 and C, are the mean and covariance of J, and
C N is the covariance of the zero mean noise N . In this case,
the first term is chi-square, which measures compatibility of
the solution with the measurements, and the second term is a
norm on J . The closed form solution of the MAP estimate in
(14) is [12]

N T T -1 .
I=c¢6[6e6 -cy] (B-GMpy+M,.  (13)

(Due to the symmetry of p(J|B), this is also the minimum
mean square estimate of J.)

If J is zero mean (M, = 0) and the noise is negligible
(CN = 0), then the MJAP estimate reduces to a weighted
minimum norm solution to (10).

N T -1

7=c,6"[6c,6"] B. (16)
The elegance and simplicity of minimum norm solutions
have attracted many MEG researchers [5,6,13-17]. However,
the underlying implicit model of a zero mean Gaussian dis-
tributed current density has little physiological basis. Indeed,

minimum norm current reconstructions are invariably
smooth and suffer systematic geometric bias.
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6. NON-GAUSSIAN PRIORS

Although easy to generate, the smooth, diffuse current recon-
structions produced by minimum norm techniques do not
provide a good match to our understanding of neural func-
tioning. In many dynamic brain functions, the neural
responses are known to be sparse and localized. The current
dipole represents an extreme of this model. Indeed, in the
Bayesian framework, dipole models correspond to priors in
which only small sets of Dirac impulses are allowable for j .

Ideally, one would like to maintain the generality provided
by the distributed source model, while at the same time
favoring solutions that are sparse and localized. Jeffs [17]
minimizes a p-norm where p < 1 instead of the traditional
2-norm. The implicit prior of this approach,
P (J) o< exp {{J]| p} , clumps the probability density along
the axes of the vector space. An alternative is to directly min-
imize the number of nonzero sources [5,8). A third approach
has been to implicitly derive focal solutions by iterative min-
imum norm weightings [6,7].

A particularly interesting class of image models are Markov
random field (MRF) priors which have been used to great
effect in many other branches of image processing {18].
These models have densities in the form of Gibbs distribu-
tions, p (J) = (1/z) exp {sU (J) } , where z is a constant
and U (J) is a Gibbs energy function which consists of a sum
of potential functions, each of which is defined on a set of
voxels which are mutual neighbors of each other. By care-
fully choosing the neighborhood system and the potential
function, it is possible to construct a prior which reflects prior
physiological information. For example, functional localiza-
tion in the cerebral cortex can be reflected in a prior for which
images consisting of a relatively small number of clusters of
active pixels occur with high probability. Such a model can
be developed within a MRF framework. Furthermore, MRF
models provide a natural framework for incorporating addi-
tional functional information extracted from PET or fMRI by
providing increased probability of current sources in regions
showing activation in these other functional modalities.

Non-Gaussian priors pose a challenging computational prob-
lem, since they typically result in non-concave posterior den-
sities and hence are subject to trapping of gradient based
searches in local optima. Methods to circumvent this prob-
lem include the use of genetic algorithms [8] and determinis-
tic and stochastic annealing methods [18].
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