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ABSTRACT

Bayesian methods have proven to be powerful tools for com-
puted tomographic reconstruction in realistic physical prob-
lems. However, Bayesian methods require that a number of
modeling and computational problems be addressed. This
paper summarizes a coherent system of statistical model-
ing and optimization techniques designed to facilitate ef-
ficient, unsupervised Bayesian emission and transmission
tomographic reconstruction. New results are included on
improved convergence behavior of these methods.

1. INTRQDUCTION

For the past 10 years, Bayesian estimation techniques have
been studied for application in computed tomography, pro-
viding a framework for accurately modeling physical mea-
surements and incorporating prior knowledge[1, 2, 3]. These
model based techniques can improve the quality of recon-
structions by incorporating more information about the data
and measurement process. In particular, Bayesian recon-
struction methods commonly employ a forward model which
accounts for effects such as of photon counting statistics,
missing or attenuated projections, and alternative projec-
tion geometries. Reconstruction quality can also be sub-
stantially improved by using a prior image model which in-
cludes positivity constraints and non-Gaussian image statis-
tics to preserve edges and reduce noise. The advantages of
this Bayesian approach are particularly important when the
signal-to-noise ratio is low, the dynamic range of material
densities is high, or the projection measurements are sparse
or attennated. In contrast, the quality of more conventional
direct reconstruction approaches such as filtered back pro-
jection (FBP) can be severely limited in these cases.
While Bayesian reconstruction methods have numerous
potential advantages, important technical barriers still re-
main to wide spread application. First, Bayesian recon-
struction methods usually require iterative numerical opti-
mization of a cost function with respect to all the image
pixels. Because of the high dimensionality, this optimiza-
tion can be very computationally intensive, often requiring
orders of magnitude more computation than conventional
FBP reconstructions[4]. The complexity of this optimiza-
tion is worsened by the nonlinearities introduced in accu-
rate modeling. Second, the forward and prior models for
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image reconstruction usually contain unknown free param-
eters which dramatically effect the quality of reconstruc-
tions. The most important among these parameters is the
so called “regularization constant” which is related to the
signal-to-noise ratio of the data.

The objective of this paper is to present a coherent
system of models and algorithms for Bayesian tomogra-
phy which accurately represent the data collection process
and prior knowledge, estimate unknown model parameters
directly from the available data, and substantially reduce
the cost of the required numerical operations. We present
new results illustrating substantial computational savings
in finding both MAP reconstructions and estimates of the
parameters which determine their character.

2. MODELING

The standard forward model which we use assumes Poisson
distributed photon counting statistic for the tomographic
measurements. The two general cases which we consider
are the transmission model used for measuring attenuation
cross-sections, and the emission model used to measure the
spatial density of photon emissions. The emission model
may be applied to a wide variety of applications includ-
ing single photon emission tomography (SPECT), positron
emission tomography (PET), and photon limited imaging.

In the Bayesian framework, the image cross-section is
also modeled with an a priori distribution. We choose a
Markov random field (MRF) model with a distribution of
the form

p(z) = { S exp {Z{.‘_J‘} ai,; P (ﬂ:—ﬁ)} if Vi, z; >0

0 otherwise

where p(.) penalizes differences between adjacent pixels,
and o is a parameter which controls the variation in =z.
A variety of convex functions have been proposed for p(-)
[5, 6, 7). In this work, we use a Generalized Gaussian
Markov random field (GGMRF) [7] where p(z) = -};|z]" for

p 2 1. This yields the following distribution.

1 P S D q 3 ; .
p(z) = gexp{z{w} ai; o7 lei — 2] } Vi, z;, >0

otherwise

The GGMRT model is convex, allows preservation of edges,
leads to tractable methods for estimating the parameter o,
and does not require the choice of a threshold parameter
related to edge magnitude.
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3. OPTIMIZATION

While the mathematical forms of the transmission and emis-
sion models are different, they have a similar structure
which allows them to be solved using the same algorith-
mic approaches(8, 9]. The transmission tomographic recon-
struction problem under various forward models has been
approached with many different types of numerical tools.
However, since the seminal paper of Shepp and Vardi[10],
the principal method for statistical emission tomographic
reconstruction has been the expectation-maximization (EM)
algorithm[11]. Although improvements in convergence have
been made to EM for tomographic reconstruction[12], it
is still slow to converge due to its similarity to gradient
ascent[13]. Application of EM to the Bayesian maximum
a posteriori (MAP) problem is non-trivial, since the max-
imization step is complicated by the local interaction of
image pixels in most prior distributions. Several techniques
have been employed to overcome this limitation(5, 14, 15],
but the problem of the slow convergence of the basic EM
algorithm for this problem remains.

The key to our approach is an efficient algorithm for
minimizing the Bayesian cost function with respect to a sin-
gle pixel’s value[9, 13]. This local update strategy has been
widely used in optimization problems and goes by a variety
of names including Gauss-Seidel (GS) in partial differential
equations, iterative coordinate decent (ICD) in numerical
optimization, and iterated conditional modes (ICM) used
in maximum a posteriori (MAP) estimation. A similar
method known as the method of space-alternating gener-
alized expectation-maximization (SAGE)[16, 17] has been
proposed by Fessler and Hero. For the emission problem,
the SAGE method is similar in operation and performance
to ICD since it incorporates a sequential update into EM
by varying the complete data space.

For a variety of reasons, the ICD method is particu-
larly well suited to the problem of Bayesian tomography.
First, ICD can be efficiently applied to the log likelihood
expressions resulting from accurate forward models of Pois-
son counting statistics. Second, the ICD algorithm con-
verges very rapidly when initialized with the filtered back
projection (FBP) reconstruction. The fast numerical con-
“vergence of ICD results from the fact that the tomographic
reconstruction problem is the solution to an integral equa-
tion. This structure causes the high spatial frequencies to
converge rapidly when pixels are updated using the ICD
algorithm.

The third important advantage of the ICD algorithm
is that it easily incorporates convex constraints, and non-
Gaussian prior distributions. In particular, positivity is an
important convex conmstraint which can both improve the
quality of reconstructions and significantly speed numerical
convergence. Positivity constraints are particularly impor-
tant in emission reconstruction problems where typically a
great deal of the image cross-section is zero. Non-Gaussian
prior distributions such as the GGMRF are also important
because they can substantially reduce noise while preserv-
ing edge detail.

In Figures 1 and 2, rates of convergence are compared
in computing MAP emission tomographic reconstructions
using ICD and several adaptations of the EM algorithm
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Figure 1: Convergence of MAP estimates using ICD/New-
ton-Raphson updates, Green’s (OSL), Hebert/Leahy’s
GEM, and De Pierro’s method, with a Gaussian prior
model.

to the Bayesian problem. The data include approximately
5 x 10* counts among 64 x 64 projections. The alterna-
tives shown are Green’s one-step late (OSL){5], a general-
ized expectation-maximization (GEM) algorithm of Hebert
and Leahy[14] and De Pierro’s method[15]. The ICD itera-
tions proceed to the MAP estimate at a much more rapid
pace than the EM-based techniques, showing promise for
much more computationally efficient estimation.

4. PARAMETER ESTIMATION

Parameter estimation for Markov random fields is known
to be a difficult problem due to the intractable form of the
normalizing constant or partition function. However for the
GGMRF prior distribution, the maximum likelihood (ML)
estimate of o can be shown to have a very simple form [18]:

. 1
59 = 5 {Z:}a,-,jp(zg —z;),
i

where N is the number of pixels in the image.

In X-ray and v-ray transmission tomography, projec-
tion domain noise properties depend on the system’s input
dosage, whose attenuation provides measurements of inte-
gral density. In many systems, the data is stored without
preservation of the dosage parameter yr, whose balance
with o defines the MAP solution. The ML estimate of yr
has also been shown to have a tractable form, and can be
computed in parallel to that of ¢{19].

The closed form expressions for & and §r cannot be
directly applied to the tomography problem because the
cross-section z is unknown. This type of problem is gen-
erally referred to as a missing data problem, and can be
solved using the expectation maximization (EM) algorithm
in a different setting from its application to MAP recon-
struction. For our problem, the EM algorithm results in an
iterative procedure in which the estimate of the unknown
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Figure 2: Convergence of MAP estimates with a generalized
Gaussian prior model with ¢ = 1.1.

parameters 8% = [o*, y%]* from the observed data Y = y is
updated with each iteration k using the formula

6! = argmax Elog[g(y, X|O)|Y = 9,6:]] (1)

The required conditional expectation can be computed by
generating samples from the posterior distribution of the
cross-section z given the projection data and 6*.

5. SPEEDUP TECHNIQUES FOR
PARAMETER ESTIMATION

The EM algorithm update of (1) requires the generation of
sample reconstructions, X, given the data, y. The Metropo-
lis algorithm is a commonly used simulation method for
generating these samples. However, this algorithm tends to
suffer from slow convergence to the equilibrium distribution
because the transition probability distribution is required to
be symmetric.

Hastings [20] and Peskun [21] have developed a gener-
alization of the Metropolis algorithm which compensates
for asymmetric transition probabilities through the proper
choice of the associated acceptance probability. More specif-
ically, let x(z) be the desired sampling distribution and let
g¢(z, ') be an arbitrary transition probability for generating
a new state z’ from the current state z. Then the proba-
bility of accepting the new state is given by

w(z')q(z',x)} .

a(z,z’) = min {1, (@a(z.5)

We note that the Gibbs sampler is a special case of this gen-
eral formulation where the new state for pixel 1 is generated
using conditional distribution, under v(z), of z; given the
values of all other pixels. In this case, a(z,z’) = 1.

Green and Han [22] have argued that convergence is
fastest if the transition probability g¢(z,z’) is chosen to be
close to that of the Gibbs sampler. This can be done by ap-
proximating each pixel’s marginal distribution by a Gaus-
sian distribution
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Figure 3: Convergence plot for the mean and standard de-
viation calculated from the samples X generated from the
posterior distribution for the CBP image. A GGMRF with
¢ = 1.1 and the positivity constraint was used as the prior
distribution of the image.

In the context of the emission tomography, a Gaussian
transition probability is not always effective because of the
positivity constraint. Therefore, we first compute, g, the
MAP update at a pixel. If the MAP update is positive,
then we use a Gaussian transition probability with mean u
and appropriate variance. If the MAP update is negative,
then we use a strictly positive exponential distribution with
appropriate mean.

Fig. 3 shows the convergence of the image mean and
variance calculated from samples of X generated from the
posterior distribution. The dotted line shows the conven-
tional Metropolis algorithm while the solid line shows the
accelerated Metropolis algorithm outlined above. We see
that the new method converges in 2 iterations, while the
conventional Metropolis algorithm takes about 70 iterations
to converge.

6. CONCLUSION

This collection of techniques for modeling and computation
is intended to provide, from at least the signal processing
point of view, a relatively complete set of tools for practi-
cal applications of statistical tomography. While enjoying
the advantages of Bayesian techniques, they require a min-
imum of operator intervention in parameter choice. They
are also flexible enough to easily incorporate a variety of
physical models and constraints. The efficiency of the tech-
niques presented offers a step toward practical applications
in which computational expense is critical. We hope that
further improvements in both algorithms and hardware,
and the match between them will bring Bayesian techniques
into broader clinical and industrial practice.
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