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ABSTRACT

We present an overview of two recent developments in to-
mography: design of optimum scan patterns for time-varying
objects; and an efficient iterative edge-preserving algorithm
for limited-angle data. The first development involves the
introduction of a new problem definition and changing the
“rules of the game” by unconventional acquisition formats.
It also employ the mathematical tools of lattice theory,
which have seen relatively little use in this area. The second
development, on the other hand, addresses a classical and
long standing problem, by a combination of more rigorous
analysis and modeling with some heuristic twists.

1. INTRODUCTION

We present an overview of two recent developments in to-
mography: (i) Design of optimum scan patterns for time-
varying tomography [1, 2]; and (i) Efficient iterative limited-

angle tomographic reconstruction using non-linear constraints

(Bl

In the first problem, we consider the tomography of ob-
jects with spatially localized temporal variation, such as a
thorax cross-section with a beating heart, or an internal
organ with contrast agent flowing through it. The con-
ventional scan format, in which projections are taken pro-
gressively around the object, requires high, and sometimes
infeasible scan rates to avoid motion artifacts in the recon-
structed images. We formulate the problem of data acquisi-
tion as a time-sequential sampling problem of spatially and
temporally bandlimited signals, where only one view can be
taken at a time, but the time interval between successive
views is independent of their angular separation. These con-
ditions, naturally satisfied in magnetic resonance imaging
 and in x-ray CT using electronic beam deflection, can also
be satisfied by a conventional system with a continuously

This work was supported in part by National Science Foun-
dation grant No. MIP 91-57377 and Joint Services Electronic
Program, Grant No. N00014-90-J-1270

2903

. - Urbana, IL 61801

and rapidly spinning gantry with source pulsing. Theo-
retical analysis, which includes tight performance bounds,
shows that by using an optimally scrambled angular sam-
pling order, the required scan rate can be lowered as much
as four times, while preserving image quality. The analy-
sis also greatly simplifies the design of the optimum scan
pattern by reducing it to a constrained geometric packing
problem. The resulting design procedure depends only on
pre-specified geometric and spectral parameters, and the
desired spatial resolution. The resulting patterns have a
simple congruential structure. Reconstruction is accom-
plished by interpolation (at a negligible computational cost)
to standard time-invariant scan format, followed by conven-
tional reconstruction.

Previous attempts for limited angle reconstruction [4]-
(6] have achieved only limited success: they either used
too mild constraints that were insufficient to adequately
regularize the severely ill-posed problem, or highly struc-
tured prior knowledge, which limited the applicability of the
method to very specialized scenarios. In addition, many of

these algorithms involved iterative back-projection-reprojection,

requiring intensive computation. These same steps also of-
ten involved idealized modeling that ignored the discrete
nature of practical data, further degrading the results.

In this paper we describe our recent work [3] that ad-
dresses the foregoing problems. We report on a new, effi-
cient iterative algorithm for reconstructing piecewise-smooth
images with sharp edges from a finite number of parallel-ray
projections collected over a limited angular range. Edge-
preserving regularization has been used successfully to reg-
ularize other ill-posed problems, such as surface reconstruc-
tion, image flow, and even noisy full-angle tomography (cf.
[7]-[10]). However, to date, with the exception of [11], these
algorithms, which typically require a great deal of compu-
tation, have not been applied to the limited-angle problem.

Our approach to the efficient minimization of the re-
sulting cost functional has two components. The first is
a new, accurate and efficient FFT-based algorithm to im-
plement the conjugate gradient iteration for this problem
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[12]. In contrast to previous transform-domain iterative al-
gorithms [13], this algorithm is based on rigorous modeling
of the discrete projections, resulting in improved accuracy.
The second component of our approach [3], for nonconvex
regularization functionals, is a new deterministic relaxation
algorithm that solves a sequence of convex optimization
problems, each of which is solved by the original conjugate
gradient algorithm. Reconstructions using synthetic data
demonstrate the effectiveness of this approach.

2. OPTIMAL SCAN DESIGN FOR
TIME-VARYING TOMOGRAPHIC IMAGING

We consider a class F of time-varying images u(z,y,t) of
radius R,, with rapid temporal variation bandlimited to b,
which is spatially localized to a circular region of radius rp,,
and slower unlocalized variation bandlimited to B: < b..
Such images arise e.g., in cross-sectional cardiac imaging,
where rapid variation is restricted to the heart, with super-
imposed unlocalized slower variation, e.g., due to breath-
ing. We consider the reconstruction of u(z,y,t) from its
parallel-beam projections (g, #,t). We assume continuous
acquisition in the radial variable p, since its sampling can be
made fine enough to neglect. The sampling schedule given
by the set ¥ = {(¢1,IT)}2_.. specifies the angle and time
instant of successive projections, and therefore completely
defines the acquisition procedure. In particular, we denote
by Q(B,) the set of B,-reconstructive schedules consisting
of those TS sampling schedules ¥ for which an exact re-
construction f(z,y,t) of u(z,y,t) bandlimited to a spatial
bandwidth B, is possible (for all ¢) from the samples on ¥
of a{p,$,t). Our goal is to design such a schedule that will
maximize the inter-projection time interval T.

To simplify the problem (at a negligible loss in achiev-
able performance (1]}, we only consider the subset I'(B,) C
2(B,) of TS sampling schedules that lie on a lattice in the
(¢, t) plane. We denote by A4 and A’ alattice and its polar

lattice, defined by the basis matrices A and A* 5 A°T re-
spectively. A lattice A4 is said to pack a given set £ C R?,
if replicas (aliases) of £ centered on the points of A4 do
not overlap. We denote by P(L) the set of all lattices that
pack £. Now, an analysis of the 3-D Fourler transform
M (4, up, ) of the projections f(p,$,t) of objects in the
class F reveals that they have an odd shaped support. The
condition for alias-free reconstruction from samples on a
lattice A4 involves the packing, in 2-D, of a cross-shaped
spectral support B by the polar lattice A%. In turn, the
dimensions of B are determined by the geometric and spec-
tral parameters Rm, rm, b:, B: of the object class F, and by
the desired reconstruction bandwidth (resolution) B,.

With these preliminaries we have the following results [1]:

A lattice Aa is a B,-reconstructive TS schedule, i.e., Ay €

Figure 1: upper bound on figure of merit

I'(B,), if and only if A} € P(B) and has the basis

e L
A‘=[” "]yp,lez,gcd(p,l)ﬂ,"—‘eﬁ (1)
u2 u2

Uy

where p and ! are coprime and ui/uz is a rational num-
ber. A similar result, but with A* having one less degree
of freedom, applies when the number K of distinct pro-
jection angles is set a priori, e.g., owing to constraints on
detectors. (In our simulation, K = 256). In all cases, the
inter-projection time interval is

T =T(Aa, B) =det(A)/x. (2)
It follows that the scan optimization problem is reduced to

Aoptimum = arg max T(A) = arg min det[A™] (3)

AET(B,) A% € P(Bp)
A* ec

where C represents the set of matrices satisfying the con-
straint (1). This is a purely geometric problem: find the po-
lar lattice A} that packs the spectral support B, the tight-
est possible, subject to the constraint (1). The optimum
lattice Aoptimum (and hence, the schedule ¥) is then deter-
mined by A = (A*)~7T, and the optimum inter-projection
time interval is computed via (2). A simple procedure for
this geometrical design, starting by relaxing the constraints
{1) to first find the critical packing of B, and then minimally
modifying the lattice to satisfy the constraints is proposed
in [2].

Using this result, we derived an (essentially) achievable
upper bound on the possible relative improvement %}?—h}; of
the sampling lattice A over a conventional linear progressive
scan Arry. This bound (plotted in Fig. 1) can be used
to judge the merit of performing the optimization, and as
a stopping criterion in the optimization procedure itself.
We see the greatest improvements when £ and % are
both less than %, i.e., when temporal variation is spatially
concentrated by greater than a factor of three within the
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Figure 2: Reconstructions with T = 1/64. (a)-(c) optimal
sampling (d)-(f) linear sampling

center region, and it is at least three times greater there
than in the periphery.

Numerical results In the simulations 40 cycles of K =
256 projections each are synthesized (i.e., “ measured”) ac-
cording to the specified sampling schedule. To reconstruct,
we interpolate these projections via low-pass filtering in the
(ue,ue) plane over the modeled spectral support B, pro-
ducing a complete set of 256 projections at specific output
times. The data are then reconstructed using a standard
FBP algorithm, with a Hamming weighted p-filter of band-
width B,.

Figs. 2(a)-(c) show artifact-free reconstructions of a phan-
tom, at times ¢t = 0, ¢ = 0.5 and ¢ = 1, respectively, us-
ing the optimized schedule, for a somewhat reduced spatial
bandwidth, with T = 1/64. This intersample interval is four
times larger than allowed for alias-free reconstruction from
a conventional linear progressive scan. The time-varying
component of the phantom consists of two perpendicular
centered ellipses, A and B, whose densities are temporally
modulated by the sinc functions sinc #¢t and sinc n(t — 2),
respectively. For this phantom £2 = 51 Bm=1,b =05
and B, = 0. The same intersample interval T = 1/64 leads
to useless reconstructions from a conventional linear scan
(Figs. 2(d)-(f)). Reconstructions with an optimized sched-
ule of images that are only approximately bandlimited show
similar improvements [2].

3. EDGE-PRESERVING REGULARIZATION
FOR LIMITED-ANGLE TOMOGRAPHY

Our goal is to reconstruct an estimate f € L?(R?) of the
object f € L2?(R?) from a set gp € {82(2)}P of noisy,
sampled, bandlimited parallel-ray projections of f collected
at P arbitrary view angles. We represent f by a discrete
image fp € RV*¥: the coefficients of its expansion in a
basis of translates of a single given generating function b €

L*(R®). The projections are then modeled as gp ~ Afp,
where A : RNV {62(2 )}P is the discrete-continuous-
discrete projection operator that depends on b and on the
particular projection geometry being used [12]. We define

fp as a solution to the following optimization problem:

(1 ; : :
min { Hllao ~ AfolBy +XaCafo + reCefo} . (4)
fo °°

where A; € R, i = A, E are regularization parameters, and
Il - lyy is a weighted 2-norm. The regularization functional
C4 penalizes image values exceeding preset minimum and
maximum values (e.g, zero, and the minimum of all ray-
sums going through given point, respectively). Cz encour-
ages the formation of images consisting of piecewise-smooth
regions with sharp boundaries.
Cg is given by

Csfp = Z Z é[D: fp(m)], (5)

mez';:, t=z,y

where Z% = {1,...,N}?, D; : RN*N 5 RN*N =g,y
are the horizontal and vertical sampled-derivative opera-
tors, respectively, and ¢ is a positive, symmetric function
usually referred to as the neighborhood interaction function
or the influence function [9, 7, 8]. Although a convex ¢ is
recommended on various theoretical grounds [10], our nu-
merical results show that in this application a nonconvex
®, e.g p5(t) = #[1 — (¢/Te)®]™}, produced consistently su-
perior results.

To facilitate optimization mn the case of non-convex ¢,
we convert (4) into a sequence of convex optimization prob-
lems. At the k-th step, Cz is replaced by C%, defined by

Ctfo= Y > m)Difom)P.  (6)

mEZl?q i=z,y

Denoting by ff, the solution to the k-th such convex opti-
f"l, 1t = z,y are vertical and horizontal

edge maps found from fg"lz

mization problem, e

ef(m,n) = p(H*Difs(m,n)) i=zy  (7)

where #* is a sequence of blurring operators with monotone
decreasing blur converging to the identity operator, and p(t)
is a positive symmetric decreasing function. The motivation
for this algorithm, is that e;(mz,my), which takes on lower
values at edge locations (as determined from the previous
iteration) prevents smoothing across edges. The role of the
blur H* is to account for the imperfect localization of the
edges in intermediate stages of the algorithm. We can prove
that with the choice p(t) = ¢(¢)/t* this iterative algorithm
converges to a local minimum of the original criterion (4).
For convex influence functions, this will also be the global
minimum.
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(a) FBP
with noiseless data. (b) Iterative algorithm with ¢z and
APSNR= 40 dB.

Figure 3: Missing angle (22°) reconstructions.

We perform the optimization of the k-th convex version
of (4) [using (6) ] by an efficient conjugate gradient (CG)
algorithm described in {12], for which the main step at each
iteration is a 2V x 2N 2-D discrete convolution implemented
exactly using an FFT.

Charbonnier et al. [14] and Barlaud et al. [15] have
used a relaxation algorithm similar to ours for full-angle
SPECT reconstructions. The convergence proof of our al-
gorithm was inspired by that in [15]. The major difference
between our approach and theirs is that they do not blur
what we call the edge maps. (In their derivation of the al-
gorithm, they do not use the idea of an edge map. They
also use a different method for solving each convex opti-
mization problem.) However, for limited-angle tomography
the initial edge map is usually very unreliable, and we have
found that using a blurred edge map is essential when a
nonconvex ¢ is to be implemented.

Numerical Experiments We simulate noisy discrete
parallel-ray projection data collected by unit-width inte-
grating detectors, over 159 view angles evenly spaced from
—79° to 79°. We define the average projection SNR (AP-
SNR) as 10log,, of the ratio of total projection to noise
energies. Fig. 3-a shows, for reference, a limited angle
240 x 240 FBP reconstruction {with a Shepp-Logan filter)
of a phantom from noiseless projections. In Fig. 3-b, is
shown the essentially perfect reconstruction using our algo-
rithm with the non-convex ¢g, from limited angle projec-
tions with APSNR of 40 dB. This iterative reconstruction
required about 50 iterations or a total of less than three
minutes on a Silicon Graphics Indy workstation — about
six times as long as the standard FBP algorithm. Detailed
qualitative and quantitative comparisons between several
influence functions, and studies of the effects of missing
angle, number of views, and their angular distribution are
reported in [3]. (See also [12] for a similar scenario with the
Huber influence function).
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