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ABSTRACT

Advances in image-reconstruction techniques and
computation capability have made it practical to use post-
detection processing to overcome the resolution limits
imposed on conventional astronomical observations by
turbulence in the atmosphere. Techniques based on second
and third-order spectra have proved to be very successful.
The astronomical application requires special attention to
the calibration of the measured atmospheric transfer
function, the removal of photon-noise biases and the effects
of finite detector size. A new area of application is the
enhancement of images partially compensated by adaptive
optics. '

1. THE IMAGING PROBLEM

The angular resolution of large ground-based telescopes
using traditional modes of observation is limited by the
index-of-refraction fluctuations in the atmosphere to
between 0.5 and 1 arcseconds at visible wavelengths [1,2].
This means, for example, that 4-m diameter telescopes, such
as the Kitt Peak, AZ, and Canada-France-Hawaii telescopes,
have an atmospherically-determined resolving angle about
30 times greater than their theoretical diffraction limit. In
the past the motivation for building such large telescopes
has been light-gathering area, but today with the computing
power now available it has become possible and practical to
recover much of the potential resolving capability of these
large instruments by means of post-detection, digital image
processing. With the new 8 and 10-m telescopes under
construction or planned, the potential for improving
resolution is even greater.

The nature and difficulty of the high-resolution,
astronomical-imaging problem can be appreciated by
considering that the wavefront distortions induced by
atmospheric turbulence at visible wavelengths have a spatial
coherence distance, r,, of 10-20 cm., a time constant T of
10-50 ms, and departures from the unperturbed wavefront
of up to several wavelengths. When the diameter D of the
telescope is much greater than r,, as is the case in high-
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resolution imaging, the point-source image consists of from
10* to over 10° bright patches in agitated motion within a
cloud the size of the atmospheric resolution angle. The
actual number of patches is proportional to (D/r,)?, and r,
and T are both proportional to A%, where A is wavelength.
The individual patches, called speckles, have an angular
size of A/D, the diffraction-limited resolution of the
telescope. Thus the instantaneous “speckle” image contains
object information up to the telescope’s diffraction limit, but
in a highly distorted form. The averaging inherent in an
exposure time greater than 50 ms effectively destroys all
information in the Fourier spatial spectrum above a cut-off
frequency, ry/A. That is why linear inversion methods are
unable to improve the resolution in conventional images.

The key to imaging through turbulence is to record long
sequences of 10° to 10° images, each with exposure time
short enough to freeze the motion of the atmosphere. From
these highly-distorted speckle images one estimates 2nd and
3rd order spatial spectra which have non-zero expected
values up to the diffraction limit of the telescope. For
example, the spatial power spectrum gives Fourier modulus
information and Fourier phase information can be recovered
from the 3rd order spatial bispectrum. Because the speckle
phenomenon requires a narrow spectral band, 10-50 nm.
and the exposure times are short, the individual speckle
images contain less than 10° detected photon events for the
objects of greatest interest. In summary the imaging
problem is one of distortion so high that the detected images
occupy 10 to 30 times the area of the true object, and signal-
to-noise ratio much less than 1.

2. SPECKLE-IMAGE PROCESSING

Let i,(r) be the nth speckle image in a sequence of N, o(r) be
the geometric projection of the object onto the image plane
and s,(r) be the point spread function (PSF) or impulse
response of the atmosphere-telescope combination when the
nth image was taken. The variable r is position in the image
plane measured as an angle from the optical axis. The
corresponding spatial spectra are I,(u), O(u) and S, (u).
Provided the object is contained within the 2-4 arcsec
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isoplanic area of the atmosphere, i,(r) is the convolution of
o(r) and s,(r), and

L(u) - O)S,(u). )

The triple-correlation (TC) function of the image is defined
as

t(rry) - f @i (rer)i (r-r)dr, @)
image

and the bispectrum, the 4D Fourier transform of Eq (3), is
given in terms of the image spectrum by [3,4]

B (u,u) = I ()] ()1, (u,~u,). 3)

Bispectra for the object and PSF can be defined in the same
manner, from which it follows that

B, (u,u;) = B,(up,u)) B (u),u,) 4

In contrast to the expected value of the telescope-
atmosphere transfer function <S,(u)>, which is effectively
zero for u > r/A, the expected value of the bispectral
transfer function, <B,(u,, u,)>, is non-zero up to the
diffraction limit of the telescope. Furthermore, it is a real
quantity so that the phase of the image bispectrum is the
- phase of the object bispectrum. This last statement assumes
that the telescope has no aberrations. However, the
bispectrum is inherently insensitive to even order
aberrations and odd order aberrations can be corrected by
calibration of the transfer function on a point, or unresolved,
source. In practice, <B,(u,, u,)> is estimated by averaging
the triple product of Eq. (3) over the N speckle images.

Because of the very noisy nature of the speckle images, 2nd
and 3rd order correlations have noise bias terms that must
be removed before phase estimates can be made [4]. The
unbiased image bispectrum estimate is

én(uluz) = L)L (), (U, +u,)

LACAIHCN H CORT'S CC)
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Subsequent discussion assumes bispectra corrected for noise
bias.

From Eq. (3) the bispectrum phase 8(u,, u,) is related to the
object phase ¢(u) by

p(upuz) = d’(ul) * ¢(u2) - ¢(u1’u2)~ (6)

Eq. (6) is the basis of a recursive algorithm for finding ¢(u)
in terms of the bispectrum phase and the object phases at
two frequencies such that u, + u,= u. To start the recursive
process it is necessary to know the object phase at
frequencies (0, £1, 0). These phases are usually set equal to
zero with the consequence that absolute position
information is lost. In practice this is not a problem for the
observer. Estimates of the object phase at one frequency can
be obtained from the bispectral phases at different
combinations of frequencies. These multiple estimates are
combined in a weighted average with the weighting
function determined from the signal-to-noise ratio (SNR) of
the individual phase estimates [5]. The principal problem
with the recursive method is that it does not use the
available information optimally and the variances of the
estimates accumulate as the recursions progress to higher
frequencies. For these reasons it has been of interest to
consider least-squares methods.

Equation (6) can be written in matrix notation as

B-Ho @)

where § is an M-dimensional vector containing all the
phases in the bispectrum and ¢ is an N-dimensional vector
of object phases. A weighted least squares solution would
be

o, - (HTWH' HTWB, ®)

where W is a positive definite symmetric weighting matrix
determined by the SNR of B(u,, u,). Practical image sizes of
256 x 256 pixels make the H matrix extremely large, and
because M > N the system of equations is overdetermined.
Furthermore, the real data is noisy and the bispectrum
phases are known only modulo 2n. For these reasons direct
evaluation of Eq. (8) is not practical. Meng et al {5] and
Matson [6] describe and evaluate iterative phase recovery
algorithms in which the phase relationships are carried in
phasors in order to avoid the phase wrapping problem.
Haniff [7] deals with this problem by minimizing the
objective function
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F . i {MOd[pij'(&)‘"&j'&),;j)] }2. (9)
ij (0”

where the subscripts i and j define the discrete frequencies
in the digitized image spectrum, w;; is a measure of the error
on the unwrapped B, and the circumflexes denote quantities
that are to be varied in order to minimize F.

Although <B(u,, u,)> is non zero up to the diffraction
limit, in the regions where u,, u, > ry/A it is depressed by a
factor of (ry/D)* compared to the transfer function in the
absence of atmosphere. In the regions near the axes where
either u, or u, is less than ry/A the transfer function is
depressed by only (ry/D). Thus in the near-axis regions the
SNR can be more than an order of magnitude higher than
elsewhere in the bispectrum. Each value of u, defines a
plane in which u, can take on values from O to the
diffraction limit. The numbers of planes used in the
computation is a convenient way to measure the amount of
the bispectrum employed. Meng and Aitken [8] have
studied this relationship over a wide range of photon rates,
with objects of different degrees of complexity and
atmospheric severity. The general guidelines are that there
is a clear improvement in the quality of the images as the
number of planes increases, but the improvement is greatest
at photon rates midway between the low end where the
recovered picture is only a field of noise and the level at
which the atmospheric fluctuations become the dominant
noise. Note that u, and u, are interchangeable. It was also
found that the effectiveness of additional planes, or the
return on the investment in computation, increased with
increasing object complexity.

Although both the modulus and the phase of the stellar
object’s spectrum can, in principle, be recovered from the
bispectrum, it is generally more convenient to obtain the
modulus from speckle interferometry (SI) [4], which
measures the object power spectrum. The modulus squared
is attenuated by the factor (r,/D)? at frequencies above ry/a.
Calibration of the modulus is achieved by measuring the
power spectrum of a neighbouring, unresolved star before,
after or alternately with the object of interest [9]. Inverse
Fourier transformation of the estimated spectrum gives the
image.

3. IMAGE TRUNCATION

As described above, the short-exposure speckle image
retains detail up to the telescope’s diffraction limit, but the
speckle cloud can be an order of magnitude or more larger.
In order to adequately sample the speckle pattern, the
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speckle images are magnified to fill the detector aperture
a(r), as completely as possible. This means that there can be
some truncation of the wandering speckle cloud at the edges
of the detector. Even small amounts of image truncation can
cause severe artifacts and distortions in the reconstructed
images [10]. This phenomenon, which usually has a
negligible effect in conventional imaging, is quite
pronounced in speckle-image reconstruction from higher-
order spectra.

The effect of the finite detector size is to multiply the image
i(r) by a(r). In the Fourier domain the image spectrum is
convolved with the Fourier transform, A(u), of a(r). The
cause of the distortion is the leakage of the very strong
central “spike” of the bispectrum into the convolution
integral through the sidelobes of the detector-aperture
bispectrum, A(u,)A(u)A(u,+u,).

Truncation of the long-exposure image is seen as strong
negative artifacts and elongations of the stellar images in
directions perpendicular to the edges causing the image
truncation. Apodization may give a smoother image but
cannot reverse the distortions. The problem must be avoided
by correct design of the observation. An example
illustrating the sensitivity of image reconstruction to this
phenomenon is a 3-component object imaged onto a circular
aperture such that about 3% of the long-exposure image
energy was lost [10]. When D/r, takes the value 13.3, 12.9
and 12.5 the rms error between true and reconstructed
images are 0.53, 0.043 and 0.032. Note the order of
magnitude change between the first two cases. When the
image is demagnified by a factor of 2 so that the long-
exposure is well within the detector. the error was 0.00025.

4, FUTURE DEVELOPMENTS

Currently adaptive optics (AO), that is pre-detection
compensation, is receiving a great deat of attention from the
astronomical community. AO systems sense the wavefront
deformations caused by the atmosphere and correct them in
real time by means of a deformable mirror. Because at infra-
red wavelengths both r, and T are larger than at visible
wavelengths, AO systems are easier to implement in the
infra-red. The success of the COME-ON project [11] have
shown the potential of such systems. In the visible only
partial cotrection can be achieved in practice. Despite these
recent developments, post-detection image-reconstruction
methods remain relevant. Roggerman et al [12] have shown
that bispectral processes are effective in improving the
quality of images that have been partially corrected by
adaptive optics.

AO techniques at visible wavelengths are severely limited



by the photon flux of the guide, or reference, star. However,
it now appears technically feasible to produce guide stars by
using the scattering of laser light in the sodium layer at 80
to 100 km above the earth’s surface [13]. Such systems will
still be limited by the need for natural reference objects
brighter than 19th magnitude to correct for tilt fluctuation
that are not correctable with a laser guide star. Bispectral
processing, which is insensitive to wavefront tilt, is a
potential solution. It seems certain that post-detection
processing will always be required to extract the maximum
-amount of information from the AO system [14].

One problem with the bispectral method is that other prior
information cannot be readily included. Information that
would enhance the reconstruction are the fact that the
object’s intensity distribution must be positive and that good
estimates of the objects support can be made from its spatial
autocorrelation, the Fourier transform of the SI power
spectrum. Ayers and Dainty [15], Christou [16] and Lane
[17] have developed iterative deconvolution algorithms that
alternately impose image domain constraints such as
positivity and support, and frequency-domain constraints
obtained from the measured higher-order spectra. Work in
this direction has the potential to produce high-quality
images using all possible'known information about the
object.

Schulz and Snyder [18] have proposed an iterative
technique that recovers atmospherically degraded images
from nth order correlations. It is straightforward to
implement and allows prior information such as positivity
and support constraints to be included. This approach is
different from the previous bispectral and iterative
deconvolution methods in that it produces the image
directly through a sequence of image-domain iterations. The
introduction of error measures other than the traditional
least-squares metric opens up new avenues for exploration.
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