INTEGRATING ANALYSIS, SIMULATION, AND IMPLEMENTATION TOOLS
IN ELECTRONIC COURSEWARE FOR TEACHING SIGNAL PROCESSING

Roberto H. Bamberger! Brian L. Evanst Edward A. Leet James H. McClellan Mark A. Yoder®

"Dept. of EECS, Washington State University, Pullman, WA 99164-2752
*Dept. of EECS, University of California, Berkeley, CA 94720-1770
$School of ECE, Georgia Institute of Technology, Atlanta, GA 30332-0250
*Dept. of ECE, Rose-Hulman Institute of Technology, Terre Haute, IN 47803-3999

ABSTRACT

A typical path in learning digital signal processing be-
gins at the theoretical end and progresses toward the
practical constraints imposed by implementation in
hardware or software. On this path, the student would
learn how to convert mathematical theory into algo-
rithms and then algorithms into efficient implementa-
tions. In this paper, we first summarize the electronic
courseware we have alrea.d}" developed in Mathemat-
ica, MATLAB, and Ptolemy to teach DSP theory, al-
gorithms, and implementation, respectively. Then, we
discuss ways to integrate our efforts to help students
discover the connections between these topics.

1. INTRODUCTION

A typical path in learning digital signal processing be-
gins at the theoretical end and progresses toward the
practical constraints imposed by implementation in
hardware or software. On this path, the student cov-
ers mathematical transforms and algebraic operations
on signals and systems, simulation and analysis of al-
gorithms that realize DSP theory, and hardware archi-
tectures and programming strategies that implement

R. H. Bamberger (bamberg@eecs.wsu.edu) was supported in
part by the National Science Foundation under contract MIP-
9116683. B. L. Evans (ble@eecs.berkeley.edu) and E. A.
Lee (eal@eecs.berkeley.edu) were supported by the Ptolemy
Project. J. H. McClellan (mcclella@eedsp.gatech.edu) was sup-
ported in part by the Joint Services Electronics Program DAAH-
04-93-G-0027. M. A. Yoder (Mark.A.Yoder@rose-hulman.edu) is
currently on Sabbatical at the Georgia Institute of Technology.

The Ptolemy project is supported by the Advanced Research
Projects Agency and the U.S. Air Force (under the RASSP
program, contract F33615-93-C-1317), Semiconductor Research
Corporation (project 95-DC-324), National Science Foundation
(MIP-9201605), Office of Naval Research (via Naval Research
Laboratories), the State of California MICRO program, and the
following companies: Bell Northern Research, Dolby, Hitachi,
Mentor Graphics, Mitsubishi, NEC, Pacific Bell, Philips, Rock-
well, Sony, and Synopsys.

2873

DSP algorithms efficiently. Different design tools can
support learning along the way.

Among the tools that could help students learn DSP
theory, we have primarily used the symbolic mathemat-
ics environment Mathematica [1]. Mathematica has
limited signal processing abilities, so Evans and Mec-
Clellan developed the Signal Processing Packages [2]
to perform algebraic operations (e.g. convolution and
transforms) on signals expressed as mathematical for-
mulas Based on these packages, we have written inter-
active tutorials on convolution, filter design, and trans-
forms [3], interactive tutorials on complex numbers,
sampling, and modulation [4], and interactive solution
sets [5] for a signals and systems textbook [6].

Using MATLAB [7], McClellan and others [8] have
developed laboratory exercises to help students make
the transition from mathematical formulas to programs
that process data. The exercises help students convert
theory into algorithms by having them write programs
in MATLAB, at a higher level than Fortran or C.

Lee and others [9] have researched the use of block
diagram languages to represent the dataflow of algo-
rithms, organize algorithms hierarchically into systems,
and generate efficient hardware and software imple-
mentations. They have encoded their research ideas
in the visual block diagram environment Ptolemy [10].
Based on Ptolemy, Lee has developed exercises for un-
dergraduate [11] and graduate [12] DSP classes. Lee
has also created a multidisciplinary course to bring to-
gether a variety of topics in hardware/software imple-
mentation of DSP systems [13].

In this paper, we first discuss electronic courseware
we have developed to help students learn DSP the-
ory, algorithms, and implementation. Then, we dis-
cuss ways to integrate these separate efforts in order to
help students convert mathematical theory into algo-
rithms and algorithms into efficient implementations.
At the end, we give information on how to obtain the
electronic courseware we have developed.

0-7803-2431-5/95 $4.00 © 1995 |IEEE

2. DSP THEORY IN MATHEMATICA

Mathematica is a symbolic mathematics environment.
Its algebraic abilities are sufficient to teach introduc-
tory circuit analysis [14] but are insufficient for teaching
signal processing. The Signal Processing Packages [2]
extend Mathematica by defining common signals and
systems. The packages also perform algebraic opera-
tions such as continuous and discrete piecewise convo-
lution, Laplace and Fourier transforms, and z, discrete
Fourier, and discrete-time Fourier transforms. The bal-
ance between continuous and discrete operations en-
abled us to write an interactive companion to [6].

Students can use the packages to compute trans-
forms and convolutions symbolically. They can inves-
tigate properties of transforms; e.g., the z-transform of
a™z[n] is returned as X(%). Students can also see how
to perform computations by hand. For example, the
packages can convolve piecewise descriptions of signals
to produce a piecewise result and animate the flip-and-
slide process. This ability has enabled us to take a
visual approach in introducing convolution.

In teaching convolution, an instructor would tra-
ditionally show students the convolution integral and
then spend a class period or two explaining how to eval-
uate the integral. Once mastered, the student would
convolve many signals to get a feel for what convolu-
tion is. The instructor could turn the students loose
on the computer to compute discrete approximations
of continuous convolution. Although these programs
improve insight by showing the flip-and-slide process,
they do not produce piecewise answers in the form the
students get when convoluting by hand.

Long before the students see the convolution inte-
gral, we show them how to use the Signal Processing
Packages to convolve two continuous signals. Then, we

ask them to convolve two pairs of signals, sketch the.

results next to the input signals, and predict the re-
sult of the convolution of a third pair. We start by
asking them convolve a pulse function and then a tri-
angular function with a Dirac delta function and then
ask them to guess at the convolution of a finite-extent
downward parabola and a Dirac delta function. They
then convolve with a shifted Dirac delta function, a pair
of shifted Dirac delta functions, etc. After convolving
a dozen pairs of signals, most students are able to pre-
dict the convolution of a pulse train and a decaying
exponential. Once they have a good understanding of
what convolution does, then we show them how to com-
pute it using the convolution integral. Although some
students still cannot perform piecewise convolution by
hand without making a simple error, most students now
have an idea if their answer looks correct or not.

3. DSP ALGORITHMS IN MATLAB

When a student needs to make the step from math-
ematical formulas to actual processing programs that
can act on real data, MATLAB becomes very appropri-
ate. In MATLAB, the student writes programs, but at a
higher level than FORTRAN or C. MATLAB combines
just enough programming at just a low enough level to
get across the computability issues.

Perhaps using the Discrete Fourier Transform (DFT)
as an example would make this point clear. This trans-
form can be derived mathematically by examining a
sampled version of the Fourier transform for discrete-
time signals. It has numerous properties which are pre-
sented as theorems in a typical DSP course, including
the circular convolution property. However, the most
important property of the DFT is that it is computable,
but not only that, it is computable by an extremely ef-
ficient algorithm— the Fast Fourier Transform (FFT).
For this reason, any presentation of the DFT without
an accompanying lesson in using it for numerical pro-
cessing misses a golden opportunity to explore the true
meaning of issues such as circular convolution via a
program for overlap-save which amounts to a few lines
of MATLAB code. Another time-tested example is fil-
tering in the DFT domain:

%-— # freq. samples in passband

Npass = 13;

HE = [ones(i,Npass),
zeros(1,512-2*Npass+1),
ones(1,Npass-1)];

%-- filter in the freq. domain

YY = HHE .* fft(xin, 512);

yout = ifft(YY¥);

Analysis of this code fragment leads to a discussion of
the frequency sampling method of filter design and how
HH controls the frequency response of the lowpass filter.
Writing programs in MATLAB can introduce stu-
dents to two fundamental implementation issues:

1. Functional programming: many MATLAB functions
are exactly equivalent to a module in a block diagram
of a signal processing algorithm. For example,

plot(logl0(abs (f£t(sin(0.123*%[0:99]), 512))))

is a single line of MATLAB code that amounts to a cas-
cade of several operations: a sine-wave generator, a
512-point FFT, a log magnitude operation, and a plot.

2. Vector programming: operations underlying many
DSP algorithms may be expressed directly as matrix-
vector operations, thereby avoiding loops and improv-
ing performance. However, it may still be necessary

2874

to manage blocks of data using buffering strategies in
algorithms such as overlap-save convolution.

MATLAB is probably the most widespread and suc-
cessful language for signal processing exploration re-
lated to courses. One notable demonstration is the
FFT operation counting demo [8] which exploits MAT-
LAB’s floating-point operations counter to graph the
trend in the number of multiplications vs. FFT length,
and shows the great computational savings that power-
of-two FFT lengths yield. An entirely new set of in-
structional demos is based on the programmable graph-
ical interface of MATLAB 4. Within the latest Signal
Processing toolbox is a filter design demo that redesigns
a filter as the student moves graphical filter specifica-
tions with a mouse. Other demos involve sounds and
spectrograms, which help students make connections
between audio perception and the mathematics of the
frequency domain. Georgia Tech students have built a
pole-zero demo in which students can move root posi-
tions with a mouse and immediately see the updated
time and frequency responses of the system. Develop-
ment of more canned demos will structure the course-
ware provided in MATLAB.

Despite the central role that MATLAB plays in sim-
ulation for DSP, it has definite limits because it is an
interpreted language. Its strength as a general pur-
pose programming environment for scientific calcula-
tions has led to increased demand for a MATLAB com-
piler that would produce better execution times for
long-running simulations. This general purpose nature
is also one of its primary shortcomings when DSP de-
sign is considered. Not only would a compiler for cer-
tain DSP chips be desirable, but also it would be useful
to have simulation capability that reflected actual pro-
cessor constraints such as finite word length. This is
where other tools must come into play. For example,
the Ptolemy interface to MATLAB allows more detailed
simulations and a migration of MATLAB algorithms to
implementation. Interfacing MATLAB to design envi-
ronments such as Ptolemy is an attractive path both
for education and for actual design practice.

4. DSP IMPLEMENTATION USING
BLOCK DIAGRAM LANGUAGES

Block diagram representations of signal processing sys-
tems are a pedagogically useful complement to math-
ematical representations. They are commonly used in
informal ways in textbooks, but can be formalized and
developed into a programming environment. Such a
programming environment can be used by undergrad-
uate and graduate students as a design laboratory, e.g
Ptolemy at U.C. Berkeley [10, 11, 12].

Interactivity and animation in block diagram en-
vironments can greatly aid the development of intu-
ition. In principle, real-time implementations gener-
ated by these environments would strengthen this in-
tuition. The hardware required, however, is still pro-
hibitively expensive for some teaching environments.

Unlike mathematical representations, a block dia-
gram environment works with representations of sys-
tems that are conceptually closer to implementations.
For example, Ptolemy would allow the student to de-
compose a larger system into its signal processing, com-
munications, and control subsystems and then further
decompose each subsystem into computational mod-
els (processing uniformly sampled data, discrete-event,
finite-state machine, etc.). The student might then
carry the design to a working prototype by matching
the subsystems to hardware/software implementations.
The support of hierarchical system design allows the
student to tackle fundamental design problems.

Block diagram programming environments are likely
to be closer to the design environment that students
will use professionally than a wire-wrapped, soldering-
iron hardware environment. They are hopefully closer
than the assembly language, development board, in-
circuit emulator environment with which so many DSP
engineers today struggle. Intuition about semantics,
therefore, may prove to be at least as important as in-
tuition about circuits. To explore this issue, Lee has
developed a multidisciplinary course on programming
languages for real-time reactive (DSP) systems [13].

5. INTEGRATING TOOLS FOR
ELECTRONIC COURSEWARE

The primary motivation for integrating analysis, simu-
lation, and implementation tools is to provide students
with a rich, interactive, user-friendly environment for
“inquiry-based” a.k.a. “discovery-based” learning. Tra-
ditionally, signals and systems courses in electrical en-
gineering have been taught using a linear learning model
which concentrates on facts and formulas, relegating
the student to a passive role. If the student can apply
these facts and formulas successfully, then the student
is considered to have mastered the material. Only re-
cently has an increased emphasis been placed on under-
standing the facts and formulas. In the case of signals
and systems theory, students would now understand
the relationships between the systems being investi-
gated and the physical properties of the systems and
resultant signals. What will the resultant signal sound
like, what will it look like, and how difficult will it be to
implement this system? By properly integrating mod-
ern and evolving computer-based tools such as MaT-

2875

LAB, Mathematica, and Ptolemy, it is possible to con-
vert a course taught using a traditional lecture-based
format into one where the student becomes an integral
and active member of their education.

Discovery-based learning requires an easy-to-use en-
vironment for experimentation. The computer-based
tools described in this paper facilitate the design of
new exercises for students. Instead of solving contrived
problems, the student would now investigate the im-
pact of various system parameters and see how they
affect the system’s performance. In this fashion, the
student can ask, and usually answer, questions such
as “What if I change this....” or “Why not do it this
way instead...”. By physically seeing and experiencing
the impact of their proposed changes, retention and
understanding are drastically improved. At the same
time, the role of the instructor would change. Instead
of being a person that only disseminates information,
the instructor becomes more of a tour guide, by help-
ing the students along the path to understanding what
they are seeing, and by providing suggestions as to how
to verify what they think they are seeing and why it is
happening. In this fashion, the students and instruc-
tors become partners in the learning process.

Of the learning tools discussed in this paper, Wash-
ington State University [4] and Rose-Hulman Institute
of Technology introduce Mathematica first by means
of self-contained tutorial Mathematica notebooks and
MATLAB later. Georgia Tech introduces MATLAB first
in sound and image processing laboratories and then
Mathematica the following year, whereas U. C. Berke-
ley uses only Ptolemy. The next step is to integrate
these learning tools together. Currently, MATLAB and
Mathematica can call each other, and we have written
a Ptolemy interface to MATLAB. However, one issue
for the student is having a standard interface. One
choice is to use Ptolemy as the primary interface, with
MATLAB commands being run from Ptolemy. We are
exploring World Wide Web interfaces as an alternative
and for long-distance learning over the Internet.

6. INTERNET ACCESS

A freely distributable version of the Signal Processing
Packages and Notebooks for Mathematica, as well as
[2], is available by FTP to gauss.eedsp.gatech.edu.
Commercial versions are available from PWS Publish-
ing Company and Wolfram Research Inc.

Information on Mathematica notebooks on modula-
tion and sampling is available on the World Wide Web
(WWW) http://wuw.eecs.wsu. edu/ “bamberg/.

Ptolemy Project papers, software, and information
is available by FTP at ptolemy.eecs.berkeley.edu

and WWW at http://ptolemy.eecs.berkeley.edu
Ptiny Ptolemy, a demo version, is also available.

7. REFERENCES

(1] S. Wolfram, Mathematica: A System for Doing Math-
ematics by Computer. Redwood City, CA: Addison-
Wesley, second ed., 1991.

(2] B. L. Evans, A Knowledge-Based Environment for
the Design and Analysis of Multidimensional Multirate
Signal Processing Algorithms. PhD thesis, Georgia In-
stitute of Technology, Atlanta, GA, June 1993.

[3] B. L. Evans, J. H. McClellan, and H. J. Trussell, “In-
vestigating signal processing theory with Mathemat-
ica,” in Proc. IEEE Int. Conf. Acoust., Speech, and
Signal Processing, vol. I, (Minneapolis, MN), pp. 12-
15, Apr. 1993.

[4] R. H. Bamberger, “Interactive tools for signal pro-
cessing education: The signal processing instructional
facility (SPIF Lab) at Washington State University,”
Comp. Appl. in Eng. Education, vol. 1, Mar. 1994,

[5] B. L. Evans, S. X. Gu, and R. H. Bamberger, “Inter-
active solution sets as components of fully electronic
signals and systems courseware,” in Proc. IEEFE Asilo-
mar Conf. on Signals, Systems, and Computers, (Pa-
cific Grove, CA), Nov. 1994

(6] R. D. Strum and D. E. Kirk, Contempory Linear Sys-
tems Using MATLAB. Boston, MA: PWS Publishing,
1994.

[7] C. Moler, J. Little, and S. Bangert, Matlab User’s
Guide. Natick, MA: The MathWorks Inc., 1989.

[8] C.S. Burrus, J. H. McClellan, A. V. Oppenheim, T. W.
Parks, R. W. Schafer, and H. Schiissler, Computer-
Aided Ezercises for Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1994.

[9] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt,
“Ptolemy: A platform for heterogeneous simulation
and prototyping,” in Proc. of the 1991 European Sim-
ulation Conf., (Copenhagen, Denmark), July 1991.

[10] The Ptolemy Group, “The Almagest: Ptolemy 0.5
Manual.” (four volumes), 1994.

{11] E. A. Lee, “Signal processing experiments using
Ptolemy — instructor’s manual.” (contact the author
at eal@eecs.berkeley.edu), May 1994.

[12] E. A. Lee, “A design lab for statistical signal process-
ing,” in Proc. IEEE Int. Conf. Acoust., Speech, and
Signal Processing, vol. 4, (San Francisco, CA), pp. 81—
84, Mar. 1992.

[13] E. A. Lee, “Computing and signal processing: An ex-
perimental multidisciplinary course,” in Proc. IEEE

Int. Conf. Acoust., Speech, and Signal Processing,
vol. VI, (Adelaide, Australia), pp. 45-48, Apr. 1994.

[14] M. A. Yoder, “An Electrical Engineer’s Introduction to
Symbolic Algebra via Mathematica.” (contact the au-
thor at Mark.A.Yoder@rose-hulman.edu), Sept. 1991.

2876

