VLSI IMPLEMENTATION OF HIGH THROUGHPUT DSP USING FINITE RING ARITHMETIC

Graham A. Jullien
Director, VLSI Research Group

University of Windsor, Windsor, Ontario, Canada, N9B 3P4

ABSTRACT

This paper reviews recent strategies in implementing DSP
systems using residue computations; in particular we
highlight current work underway in the VLSI Research
Group, at the University of Windsor, in the area of high
throughput DSP systems on silicon The paper reviews a
series of issues including recently disclosed mapping
techniques, fault tolerant architectures, and area and power
efficient VLSI implementation procedures. CAD tools,
developed for automating the design and layout of residue
DSP systems on silicon, are also discussed. An extensive
bibliography is provided for further reading.

1. INTRODUCTION

Number Theory is often treated as the last vestige of pure
mathematical pursuit. Some results, of course, are usefully
applied {1]; signal processing examples are in the areas of
cryptography, error correction/fault tolerance and in DSP
arithmetic implementation. This paper is concerned with the
latter application area. Residue Arithmetic for computer
systems has been studied for at least 4 decades, but has never
been widely applied to commercial systems. There are good
reasons for this, mostly based on the awkwardness of
operations that do not exist under closure. Some limited
success has been reported in the area of integer arithmetic
DSP systems, where the algebraic tricks associated with
computing over finite rings and fields, can be used to great
effect. Examples are the use of index calculus {2] (finite field
‘exact’ logarithms) and quadratic residue rings for reduced and
separable complex arithmetic [3].

In this paper we emphasize the importance of the structure
that residue computation imparts to DSP architectures. One-
dimensional algorithms, for example, stay one-dimensional
at the bit level, thus providing a more benign data path and
clock routing environment. In approaching the automated
design of such structures, we consider the choice of DSP
algorithm, the mapping and resulting architecture, and an
implementation strategy that is tuned to the special needs of
pipelined residue computation.

2. COMPUTING OVER FINITE RINGS

In RNS systems [4] we deal with rings, or fields, that are
used for the actual implementation and rings that are
isomorphic to direct products of implementation rings or
extensions of them. A given digital signal processing
algorithm is mapped from real or complex integer arithmetic
to the implementation rings, the computation is carried out
there, and the result is then mapped back to obtain the final
answer.

We denote by R(m) the ring of integers modulo m:

2861

Rm)={5:®,,®,} $={0,1,..m-1} 1))
where we use the notation a®,, b and a®,, b to imply the

residue reduction of a and b modulom within addition and
multiplication. We can extend the notion of addition and
multiplication from the elements of § to all of the integers.
If R, and R, are any two rings then we can define the cross-

product ring R, X R, as the set of pairs (s;,5,) €S, xS,,

with addition and multiplication defined component wise,
i.e. by eqn. (2).

(al’az)eklsz (bl’b2)=(al Dp b,a; Dp, bz)
(avaz)@R,sz (bvaz)=(ax ®Bp b a; Bp, bz)

The isomorphism between R(M) and the direct product of

3]

{R(mk)} means that calculations over R(M) can be

effectively carried out over each R(m,), independently and

in parallel. A final mapping to R(M) is performed at the

end of a chain of calculations. We have therefore broken
down a calculation set in a large dynamic range, M, to a set
of L calculations set in small dynamic ranges given by the
{m,}. This is the main advantage of using the RNS over a
conventional weighted value numbering system (e.g.
binary). The advantages of independent (not just parallel)
computation should not be underestimated, particularly
when very large special purpose high throughput processing
arrays are to be built. The final mapping is found from the
CRT:

L
x=Y (i ®u[5®n (i]} ®
k=l M

with 7, = M/m, . X €R(M), x, €R(m,) and (s)' the
multiplicative inverse operator. We have also used the
notation X, to indicate summation over the ring R(M).
2.1 Polynomial rings and quotient rings
We let R[X] denote the ring of polynomials in the
indeterminate:

X:R[X]={2akxk a, eR,nSO} @
k=0

We define the ring R[X|,X,,...,X;] to be the ring of
multivariate polynomials in the indeterminates. We use
polynomial rings, where the base ring R, is a modular ring,
R(M), and we write R,[X),X,,....X;] in place of

0-7803-2431-5/95 $4.00 © 1995 |EEE

R(M)YX,,X,.....Xs]. For a given polynomial g(X)eR{X}
we consider the set (g(X)) of all (polynomial) multiples of
g(X). This set is called the ‘ideal’ generated by the
polynomial g(X) in the ring R[X]. The quotient ring
R[X]/s(X) is then defined to consist of all elements of the
form f(X)+(g(X)), with f(X)eR[X]. We now let

indeterminates represent various powers of 2 in the binary
representation of the data samples [5, 6]. This allows the
data to be expressed as polynomials with small coefficients.
These coefficients are then mapped to a direct product ring
consisting of many copies of Z,, (the ring of integers
modulom) as factors. This has been referred to as a
Modulus Replication RNS (MRRNS) [5].

In order to be able to perform useful computations, the
modulus, M, has to be able to contain the coefficients of
result polynomials. Multiplication will be the major
problem in coefficient growth, and we assume that the
algorithm is arranged so that only single cascades of
multipliers are used prior to the application of mapping
circuitry. We can further decompose M, to allow the use of
very small rings, by the application of a RNS. The
mathematical derivations are somewhat tedious, and the
reader is referred to a more complete description in [6].

The same features associated with computation over direct
product rings are present with this technique; we may even
embed a standard RNS within the mapping structure [6].

3. APPLICATIONS TO DSP SYSTEMS

Purely feedforward algorithms provide the niche area for
efficient residue implementations. In terms of applications,
this covers a large subset of algorithms commonly used in
DSP systems. Obvious examples are DFT, DCT, FIR
filters and general matrix operations. There are also non-
obvious uses, such as digital waveform synthesizers [7].
Systems built either entirely, or partially, with feedforward
building blocks, are potential candidates for residue
implementation approaches. Recent work on minimizing
operations that do not exist under closure has revealed
strategies that also preserve the arithmetic efficiency of fast
algorithms [8]. An example of a 15 sample Discrete Cosine
Transform that supports such a single multiplication cascade
is shown in Fig. 1. The strip in the centre contains the
multiplications, all other operations being additions or
subtractions.

W oW - — - WA V.
Y . AR 2"

B&sG zCRS L0 REELE

Figure 1. 15-point ‘Fast’ DCT with no scaling requirements

Figure 2 shows how this algorithm will be mapped to a set
of independent computations over cross product rings. The

algorithm is simply replicated with each computation being
performed over different rings (as in the case of an RNS
map), or replications of the same ring (as in the case of a
MRRNS map).

Figure 2. Computing the DCT over independent rings

In the latter case we may embed an RNS system in order to
compute over large rings via the use of direct products of
smaller rings. Using this approach we have been able to
show the computation of the equivalent of over 40-bits of
dynamic range with the moduli: {3,5,7} [6].

A major stumbling block at the circuit level is the hardware
required to implement residue computations. The logic gate
approach is perfectly matched to highly decomposable
binary arithmetic functions, but a bane to the
implementation of general residue computations. Traditional
techniques have concentrated on either the use of stored
tables, or the use of ring moduli that are very close to a
power of 2. We will now look at the VLSI implications of
computing over finite rings.

4. VLSI ARITHMETIC ARCHITECTURES

If we consider only feedforward algorithms, then we need not
be concerned with pipelining issues with regard to dynamic
range scaling around recursive feedback loops. Our
algorithms can usually be implemented with some form of a
finite ring ALU. This can take on a variety of forms
depending on the algorithm. A very important building
block is the inner product step processor (IPSP), and this
has been discussed many times over the past decade or so. It
does, however, provide a nucleation centre for discussing the
computational issues.

4.1 Computing Over General Ring Moduli

If we consider computing over general ring moduli, then we
normally rely heavily on the storage of tables in ROMs. It
is clear that we can perform any binary (2-variable)
operation over a ring modulo an n-bit modulus using tables
that have 2n-bit address inputs, and n-bit word width
outputs. A complete IPSP can therefore be built with two
such ROMs. A much better solution is to decompose the
computation so that only n-bit address lines are required
(this reduces the area of the ROM from 0(2%") to 0(2™)).
4.1.1 Bit-Steered Celis

An approach introduced by the VLSI Research Group uses
bit-steered cells [9] to reduce inner product step

computations over finite rings to operations at the
individual bit level. The cells use n-bit address width ROMs
and steering logic. The steering logic forms a natural ‘scan
path’ and so provides a free testing path (free in the sense
that the path is required for the arithmetic architecture).
Using an extra ROM output bit, we can implement a parity
check daisy chain and so obtain circuit level concurrent error
detection [9]. We have also used this circuit level detection
in conjunction with MRRNS and embedded RNS systems
to propose 3 architectures for general fault tolerance. The
reader is referred to [10] for details. Using the isomorphic
mapping property of the finite ring IPSP we can also test
arbitrarily large chains with only 2" +2 vectors [11].

4.1.2 Prime Moduli

If we restrict the general modulus to be prime (still “fairly’
general!) then the use of index calculus is particularly
interesting, and is the trick used in a commercial FIR filter
chip from INMOS [2]. There is also evidence from the
academic research community that this represents a viable
decomposition strategy [3]. Some early work from our
group details the construction of prime moduli multipliers
using only n-bit ROMs [12]. In the case of [3], all of the
computations are performed using index calculus;
multiplication is clearly easy, and we use the old ‘slide-rule’
trick to perform addition with a log calculator [13].

We wish to compute over the Galois Field

GF(p)={S:@p,®p} where p is prime. We invoke the
mapping, a®, b= g("er' 8) between the additive group,
G ={{S}—(p—l): ep_,}, and the multiplicative group,

Gg = {{S} -(0):® p}, where g is a generator of Gg. It is
apparent that in order to perform multiplication over the
field (except with the element 0), all one has to do is to map
to the additive group, perform addition Mod p-1 and then
map back. To perform addition, we simply factor out the
addend and store all combinations of the remaining factor in
a ROM.

If we consider the IPSP of eqn. (6):

- Cour = (ain ®p ain)®p Cin

)
aaut =aip
then we can use index calculus, as in eqn. (7).
Your =Yin ®p-l S(g(ain 8 Bn®p [~7in]) @p 1) Q)

A ROM stores the forward mapping function, S, and a mod
P-1 adder/subtractor is used to form the n-bit address input.
Addition over general moduli has been explored by several
authors (a compendium can be found in (4], more recent
work from our group can be found in [14].

4.2 Computing Over Special Ring Moduli

Much work has been reported on circuitry that can be used
for special moduli [4]. The selection of moduli close to a
power of 2 is of particular interest, and the modulus set

2863

{2" -1,2",2" + l} has attracted much interest over the past

2 decades. With the introduction of the MRRNS we now
have the ideal strategy of using a single, specially selected,
ring modulus, and replicating computations over this ring to
obtain the required dynamic range. Based on the Galois Field
IPSP reported in 4.1 we can restrict our prime modulus to

the form 2% +1 (a Fermat number which is prime, for at
least the first 5!). The advantage of using a prime of this

form is that the index calculus can be performed using 2%
bit binary adders. Probably the most perfect numbers for
this approach are 257 and 17. We can restrict the
calculations to Mod 257, but the ease with which we can
embed a {17,257} RNS within a MRRNS mapping is too
good to pass up. Figure 3 shows the structure of a mod 257
index calculus IPSP processor where the adder/subtractors
are 8-bit (with no carry out). The block at the bottom
computes the NAN (not a number) bits that are required to
handle the missing group elements.

in

Figure 3. An Index Calculus IPSP

5. VLSI CAD ISSUES

Most of our efforts have been devoted to the lower level
issues of special module generators for finite ring
computational cells, though we have reported a formal
mapping tool for bit-steered ROM cell DSP systems [15].

It is clear that a major component of residue computations
is an n-bit ROM. Much effort has been expended on
minimizing the ROM size by decomposition of the table
contents (see appropriate papers in [4]). Our approach is
different. We build the ROMs n-dimensionally as binary
decision transistor trees, and minimize the tree structure
using graph theoretic approaches [16]. This removes the
excess bandwidth problem associated with 2-D ROMs (the
bandwidth reduction occurs when the column decoder selects
one word from a prior selected row). The trees are embedded
in TSPC dynamic latches [17]; this is a restriction on the
use of the technique...all output bits have to be pipelined.
With current sub-micron technologies it is possible to
minimize tables with 14-bit address words, allowing the
implementation of residue computations with general 7-bit
moduli. An example of a 10-input block is the Modulo 17
multiplier of Figure 4. Our experimental evidence suggests
that we will obtain a minimum reduction of about 80% of
the transistors in the full tree and we have measured a

reduction of about the same (80%) in the power dissipation
compared to PLA 1mp1ementat10ns using TSPC latches

Figure 4 10-bit Minimized Look-Up Table

Recently measured results on 14-bit input blocks, fabricated
in a 0.8micron BiCMOS process using a special current
sense latch circuit [18], demonstrate solid operation at
50MHz, as shown in Fig. 2, with greater than IOOMHz
rates predxcted from simulation.

Qutput from a 2-stage pipeline

Figure 5 Pipelined 14-bit Minimized ROM at S0MHz

Both the structure of Figure 3 and the bit-steered cell
reported in 4.1.1 are perfect matches for FPGA
implementation; this brings the flexibility of independent
computations to rapid prototyping of DSP systems. The
only critical issue is the construction of the ROM, and this
is normally a component that has already been automated in
commercial FPGA software. We have recently disclosed a
BDD design technique that reduces ROM resource size by up
to 30% (based on Xilinx technology) using the fact that
there are many don’t care states in a residue table [19].

6. CONCLUSIONS

In this paper we have very briefly discussed the issues
associated with computing over finite rings and bringing the
results to VLSI technology for the special purpose of
implementing high throughput DSP systems. We have
highlighted a recent polynomial mapping technique as
having considerable potential for implementing special field
computations using minimal computation. We have also
discussed recent results in building ROMs for RNS
applications using both full-custom BiCMOS and FPGA
technology.

REFERENCES

1. Schroeder, M.R., 1986. "Number Theory in Science
and Communication." Springer-Verlag. Berlin.

2. Barraclough, S.R., Sotheran, M., Burgin, K., Wise,
A.P., Vadher, A., Robbins, W.P. and Forsythe, R.M.,
1989."The Design and Implementation of the IMS A110
Image and Signal Processor." IEEE Custom Integrated
Circuits Conf., pp. 24.5.1-24.5.4

3. Mellott, J.D., Smith, J.C. and Taylor, F.J., 1993."The
Gauss Machine: A Galois-Enhanced Quadratic Residue
Number System Systolic Array." Proceedings of the 11th
IEEE Symposium on Computer Arithmetic., Windsor,
Canada. pp. 156-162.

2864

4. Soderstrand, M.A., Jenkins, W.K., Jullien, G.A. and
Taylor, F.J., 1986. "Residue Number System Arithmetic:
Modern Applications in Digital Signal Processing." IEEE
Press. New York, NY.

5. Wigley, N.M. and Jullien, G.A., 1990. "On Modulus
Replication for Residue Arithmetic Computations of
Complex Inner Products." IEEE Trans. Comp. 39, August,
pp- 1065-1076

6. Wigley, N.M. and Jullien, G.A., 1994. "Large
Dynamic Range Computations Over Small Finite Rings."
IEEE Trans. Comp. Vol. 43, No. 1, pp. 76-86

7. Chren, W.A.J., 1994."Area and Latency Improvements
for DDS Using the Residue Number System." Proceedings
of the 37th Mid-West Symp. on Circuits and Systems.,
Lafayette, LA. Paper 22.5 (in print).

8. Wang, Z., Jullien, G.A. and Miller, W.C,,
1991."Algorithms for Length 15 and 30 Discrete Cosine
Transforms."199] Asilomar Conference on Circuits
Systems and Computers., Pacific Grove, CA. pp. 111-113.

9. Taheri, M., Jullien, G.A. and Miller, W.C., 1988.
"High Speed Signal Processing Using Systolic Arrays Over
Finite Rings." IEEE Trans. Selected Areas in Comm. 6, 3,

10. Jullien, G.A., Bizzan, S. and Wigley, N.M,,
1994."Using Redundant Finite Rings for Fault Tolerant
Signal Processors." SPIE 1994., San Diego, in print

11. Jullien, G.A., Taheri, M., Bandyopadhyay, S. and
Miller, W.C., 1990. "A Low-Overhead Scheme for Testing
a Bit Level Finite Ring Systolic Array." Journal of VLSI
Signal Processing. , Vol 2.3 pp. 131-138.

12. Jullien, G.A., 1980. "Implementation of
Multiplication, Modulo a Prime Number, with Applications
to Number Theoretic Transforms." I[EEE Trans on
Computers. Vol. C-29, No.10, pp. 899-905

13. Zelniker, G. and Taylor, F.J., 1991. "A Reduced-
Complexity Finite Field ALU." IEEE Trans. on CAS.,
Vol. 38 , No. 12 pp.1571-1573.

14. Bayoumi, M.A., Jullien, G.A. and Miller, W.C., 1987.
"A VLSI Implementation of Residue Adders."” IEEE Trans.
on CAS. , Vol. CAS-34 , No.3

15. Jullien, G.A., Bandyopadhyay, S., Miller, W.C. and
Frost, R., 1989."A Modulo Bit-Level Systolic Compiler."
Proceedings of the 1989 ISCAS., Portland, pp. 1388-1391.

16. Jullien, G.A., Miller, W.C., Grondin, R., Del Pup, L.
and Zhang, D., 1992. "Dynamic Pipelined Computational
Blocks for Bit-Level Systolic Arrays." IEEE Jour. Solid-
State Circuits. submitted

17. Afghahi, M. and Svensson, C., 1990. "A Unified
Single-Phase Clocking Scheme for VLSI Systems." IEEE
J. Solid-State Circuits. 25, Feb., pp. 225-233

18. Czilli, J.C., Zhou, P., Jullien, G.A. and Miller, W.C.,
1994. "BiCMOS Current Steering Pipeline Circuit
Technique." IEE Electronics Letters. , Vol. 30, No. 12 pp.
943-945.

19. Venkatesan, R., Phoukas, D. and Jullien, G.A.,
1994."A New Algorithm for Minimizing the BDD Size of
Incompletely Specified Functions." Proceedings of the 1994
CMC Workshop on FPGAs., Kingston, Ont. pp. 2.6.1-
2.6.5

