Optimal VLSI Architecture for Vector Quantization

Yu Hen Hu

University of Wisconsin
Department of Electrical and Computer Engineering
1415 Johnson drive
Madison, WI 53706
hu@engr.wisc.edu

Abstract

Optimal VLSI array structure design for the
implementation of vector quantization (VQ) are
investigated in this paper. After a brief review of the VQ
algorithms, the algorithm and architecture design issues
will be discussed. This is followed by a brief survey
existing VQ implementation strategies and architecture.

L VQ Algorithms

Given a feature vector v, a code book consisting of M
code words {w(i); 1 <i < M} and a distance (distortion)
measure d(v, w(i)), the purpose of VQ is to find a code
word index i* such that the corresponding distance d(v,

w(i¥) = lnsuinS.M d(v, w(i)). For real time signal
compression, a stream of feature vectors {v(n);n=1,2, ¢+
*} need to be encoded at a rate no smaller than the rate
these vectors are sampled. To achieve this goal, special
purpose VSLI array structure may be needed.

In order to devise the code book, a set of training
vectors{v(k); 1 <k <K} will be used. The objective is to
find M code words such that the average distortion

M K
D= é; 1; Kv(9,Dd(v(K), W) M

is minimized. In (1), (v(k),i) is an indicator membership
Junction defined by I(v(k),i) = 1 if d(v(k), w(i)) < d(v(k),
w(j)), j # 1, and = 0 otherwise. Sometimes the code book
needs to be derived only once. More often, the code book
needs to be updated from time to time. In either case, the
training process of the code book often takes excessive
computations when the code book size M and training set
size K become large. Hardware assisted training will be
desirable for certain applications.

All these factors have motivated researchers in the VQ
area to study the most efficient hardware implementation
strategy of the VQ algorithm. The most popular approach
has been to use systolic VLSI array processors due to the
inherent parallelism in code book search [1, 3, 4, 8, 9, 12,
13, 14, 15, 16, 17]. Recently, there are also a number of
reports on adaptive vector quantization implementation

2853

using mainly neural networks {2, 5]. These existing results
provide a rich collection of ad hoc VQ architecture. For a
given set of specific performance requirements and resource
constraints, a designer still has to decide whether to use an
existing approach, or to devise a new architecture for the
problem on hand.

II. VQ Hardware Design Issues

A typical VQ design specification would contain the
following components:

Performance specification — Given a reasonably sized
training and testing file (e.g. 60000 training vectors, 8000
testing vectors), devise a VQ method (by selecting a
specific type of VQ, a feature extraction method, the feature
dimension, code book size, and a distortion measure) such
that both the real time processing requirement (e.g. 20
ms/frame at 8KHz sampling rate, 10 LSF coefficient per
frame), and VQ performance requirement (e.g. 24
bits/frame, SNR > 20 dB, or other perceptual based
performance measures) are met.

Resources specification — Design a special purpose VQ
VLSI array structure which implements the specified
algorithm to achieve the performance requirements, under
some physical design constraints (¢.g.. maximum physical
size, maximum power consumption, maximum /O band-
width, etc.), while minimizing the implementation and
maintenance cost.

The most crucial design decisions to be made during a
VQ processor design are (i) to select the particular VQ
algorithms, be it full search VQ, tree-based VQ, split-VQ,
or cascaded VQ, and (ii) to determine code book updating
policy (e.g.. fixed code book versus various adaptive VQ
schemes). As of now, these high-level design decisions are
often reached based on past experiences, and designer's
personal judgment. To our knowledge, no systematic
design methodology is available to aid this decision
process. Once these major design decisions are made, a
number of derivative design decisions will need to be
made. These secondary algorithm related design decisions
include feature extraction, distortion measure selection,
code word dimension (N) and the code book size (K).

0-7803-2431-5/95 $4.00 © 1995 |[EEE

In designing the VLSI array structure, it is necessary to
determine what kind of processing unit to use. If off-the-
shelf processing units are used, they should have special
hardware such as multiple communication ports to support
pipelined VLSI array processing. Examples of this type
processors include TMS32040®, and Transputer®. The
other option is to design special purpose hardware. The
choice of processing unit has profound implications on
subsequent array design: First, its inter-processor
communication capability will affect the preferred array
configuration, as well as the granularity used in parallel
processing. Secondly, its ability to address local memory
may affect the way code book is distributed in the
processor array. Clearly, other physical features such as
packaging size, power consumption will also affect the
overall system,

Once the processing unit is decided, subsequent design
decisions are needed for array structure design. These
design decisions include array configuration (e.g.. linear
array, 2D array, hexagonal array, etc.), number of
processing units, data input/output and internal data
movement patterns, as well as local memory organization.
Among these decisions, the array configuration is
intimately related to how the algorithm is mapped to the
array structure. This brings up the issue of algorithm-
architecture interaction.

IIL Algorithm Architecture Interaction

Mapping Algorithm to Array Structure — A well-
developed VLSI array structure design methodology is to
map a Jocalized, regular, iterative algorithm (RIA),
represented by a regular, shift-invariant data dependence
graph, to a locally connected, pipelined array structure [10].
Often, a given computing algorithm formulation needs to
be transformed into the desired localized RIA format in
order to exploit maximum concurrence. The array
configuration, in this design style, is largely determined by
an affine transformation from the algorithmic index space
to the processor index space. On the other hand, more
sophisticated design methodologies have been developed
recenfly to meet the architectural constraints. For example,
when consecutive RIA loops are to share the same
processor array, a multi-stage systolic mapping method [7]
can be used to better interface operations in subsequent
loops. If the array size is limited due to a constraint on the
number of processing units, partitioning methods have
been proposed to address this problem [6].

Real time processing constraint — The need to process
VQ encoding at a rate which matches the signal processing
throughput rate imposes great constraints on both VQ
algorithm design as well as architectural design. Generally
speaking, high speed processing implies less complicated
algorithm, and even inferior performance. However, with

VLSI array structure, high speed can also be achieved using
more hardware provided the algorithm is scalable.

Storage Limitation — Various VQ algorithms are
derived primarily to contain the exponentially growing
code book size of a full-search VQ. They achieve this goal
by trading VQ efficiency to smaller code book size.
However, when VLSI array structure is used, smaller code
book size alone does not necessarily imply faster
throughput rate. Regularity, pipelinability will be
additional factors which determines the achievable
throughput. The choice of processing units also affects the
maximum size of local memory, and hence the storage
limitations.

VL Full Search VQ Array Structure Design
VLA VLSI Architecture for VQ Encoding

The VQ encoding process can be re-formulated in a
localized RIA format as follows:

YO Encoding Algoritt
forn=1,2,+9+
dmin = oo, i* =0
fori=1toM
evaluate d(v(n),w(i))
if dmin > d(v(n),w(i)),
then dmin = d(v(n),w(i)), i* = i; end
end % i-loop
end
If the evaluation of d(v, w(i)) takes T¢ time units, and the
comparison of two distances takes T¢ time units, them the
total sequential computation time to encode a single date
vector v will be MeTo+(M~1)T, time units. Usually, T,
>> T¢. Thus, roughly speaking, the time taken to encode a
single code vector v on a sequential machine will be
approximately MT, time units. If the incoming data
throughput rate exceeds 1/(MT,,) data vectors per time unit,
a single CPU will not be able to keep up with the
throughput demand, and parallel processing must be used.
Motivated by this observation, previously, various VLSI
array structures using systolic array or wavefront array [10]
have been proposed [3, 9, 18]. These results are based on a
common observation, namely, the VQ encoding is an
regular, iterative algorithm, and parallelism can readily be
exploited.

We claim the VQ encoding is inherently parallel
because the computation within the loop body is not
dependent on computation in other iterations. Using the
standard VLSI array linear projection design methodology
[10}, a linear array of M processors each responsible for the
processing of the loop body of the it iteration of the i-loop
can easily be devised.

2854

N N,
v(n)— 7 7"--- — %
o - WD) w2) = eee — WM) ¥ dmin
0 — 4 8 6 mmwd 4 i‘

Figure 1. Linear VSLI Array VQ Encoder

As depicted in Figure 1, the sample vector v(n)
propagates from left to right. Within each processor, the
distortion d(v(n),w(i)) is evaluated, and compared to the
quantity dmip available from the neighboring processor on
the left. If d(v(n),w(i)) < dmin, then dmin and i* will be
updated as dmin = d(v(n),w(i)), and i* = i. Otherwise,
they will remain unchanged. Upon completion, the input
feature vector v(n), dmin and i* will be propagated to the
processor to the right, continuing the execution of the
present iteration. While v(n), and corresponding dmin, i*
are being processed in processor #2, the processing of the
new sample v(n+1) can be initiated in processor #1. As a
result, roughly every T, time units, a new feature vector
v(n) can be processed. That is, the effective throughput rate
is 1/T, one sample per time unit. This represent a linear
speedup factor of M compared to the single processor
implementation.

With the linear array implementation, the number of
processors is the same as the number of code words and
each processing unit stores exactly one code word. If the
demand of throughput rate is much smaller than 1/To but
larger than 1/MT,), one may group adjacent processing
units into a single processing unit. If g processing units
are replaced by a single processing unit with g times
storage space (i.e. storing g code words), the total number
of processing units can be reduced to M/g, while the
throughput rate also reduced to 1/(gT,). However, the

latency remains unchanged.

On the other hand, if the desired throughput rate is
higher than 1/T,, several linear arrays of processors as
shown in figure 1 can be used in an interleaved fashion to
meet the demand. For example, in Figure 2, we illustrate
interleaving three linear arrays to enhance the throughput by

three folds.
————\

v(n-1)
]

Array VQ Encoder

& Array VQ Encoder

v(n
code
N Array VQ Encoder _/

v(n+1)

Figure 2. Interleaved Array VQ encoder

output

V.B. VLSI Array for Code Book Training

A most popular VQ code book training algorithm is
the k-means algorithm, sometimes also known as the LBG
algorithm [11]. We will show that with proper algorithm
transformation, the k-means algorithm can also be
implemented with the same linear processor array as used in
the VQ encoding with little overhead:

A fringe benefit of using a linear array structure(Figure
1) is that it can easily be modified to implement the k-
means training algorithm. Note that during the VQ.

encoding phase, the minimum distortions dmin =

m}“-d(w(i), v(k)) will be evaluated for each training vector

v(k). Hence the total distortion D =), dmin can be
k

evaluated with simple summation operations. Moreover,
since every training sample has to traverse through the
entire linear array, each processing unit can place the vector
v(k) in a temporary storage space. Once dmin is found,
the i*-th processing unit such that I(v(k),i*) = 1 can be
informed to update its new code word with v(k).
Incorporating these changes into the VQ encoding
algorithm, we have the following implementation of the k-
means training algorithm using a slightly modified linear
array of processors:

k-Means Clustering Algoritt

Converged = FALSE
Repeat until converged,
D(0)=0; wnew(i) =0, count(i)=0,1<i<M.
fork=1t0K,
dmin(k,0) = e, i*(k,0)=0
fori=1toM
evaluate d(w(i),v(k))
tmp(i) = v(k)
if dminCk,i-1) > d(w(i),v(K)),
then dmin(k,i) = d(w(i),v(k)),
else dmin(k,i) = dmin(k,i-1),
i*&k,i) = i*(k,i-1)
end % if
end % i-loop
D()=D(k-1) + dmin(k,M)
index(M+1)=i*(k,M)
fori=Mto 1,
index(i) = index(i+1)
if i = index(M), then
wnew(i) = wnew(i) + tmp(i)
count(i) = count(i)+1
end % if
end % i-loop
end % for k loop
fori=1toM,

i*,i) =i

2855

w(i) = wnew(i)/count(i);
end
if 1-Dold/D(K) < &, then converged = TRUE
else Dold =D(K).
end % repeat loop

Below is a modified dual-linear processor array for the
implementation of the k-means training algorithm. Note
that new code words {w(i); 1 < i £ M} is computed only
once for each presentation of the K training samples.

Conference, Snowbird, UT, USA, J. A. Storer and J.H.
Reif, Ed., IEEE Comput. Soc. Press, Los Alamitos, CA,
USA, 1991, pp. 342-351.

[6] Hwang, Y.-T., and Y. H. Hu, "A unified partitioning
and scheduling scheme for mapping multi-stage nested DO
loop programs onto a distributed memory system,” J. of
VLSI Signal Processing, no. pp. (to appear), 1994,

[7] Hwang, Y. T., and Y. H. Hu, "MSSM - A design aid
for multi-stage systolic mapping,” J. of VLSI Signal
Proc., vol. 4, no. 2/3, pp. 125-146, 1992.

[8] Israelsen, P., "VLSI implementation of a vector
quantization processor,” in Proc. Data Compression
Conference , Snowbird, UT, USA, J. A. Storer and J. H.

distortioReif, Ed., IEEE Comput. Soc. Press, Los Alamitos, CA,

) - .o e > total
Uway f—we) .o emWQM)
i*
0 - = 0 0
= ZWnew tmp o wnew

mys Y20 ® Y5m [a
m—— WNDEW ‘--wnew ‘— oo e - WHEW

M @ M| index (M+1)

: this arrow indicates that wnew(i) is computed
only once for each presentation of K samples.

v

Figure 3. A dual linear array which computes new
weights, and total distortion

VL. Conclusion

Due to space limitation, we are unable to present VLSI
array structure implementation of other VQ algorithms. A
full report will be available at the time this paper appears.

REFERENCE

[1] Chen, O. T.-C., B.J. Sheu, and Zhen Zhang, "An
adaptive vector quantizer based on the Gold-Washing
method for image compression,” IEEE Trans. on Video
Technology, vol. 4, no. 2, pp. 143-157, 1994.

[2] Chen, O. T.-C,, B. J. Sheu, and W.-C. Fang,, "Image
compression using self-organization networks,"/EEE,
Trans. onVideo Technology,vol.4, no.5,pp. 480489, 1994,
[3] Davidson, G. A., P. R. Cappello, and A. Gersho,
"Systolic architectures for vector quantization,” IEEE.
Trans. on ASSP, vol. 36, no. 10, pp. 1651-1664, 1988.

[4] Fang, W.-C., Chi-Yung Chang, B.J. Sheu, O.T.-C.
Chen, and J.C. Curlander, "VLSI systolic binary tree-
searched vector quantizer for image compression," /EEE
Trans. on VLSI Systems, vol. 2, no. 1, pp. 3344, 1994,
[5] Fang, W. C,, B. J. Sheu, and O.T.-C. Chen, "A
neural network based VLSI vector quantizer for real-time
image compression," in Proc. DCC ‘91. Data Compression

PRISA, 1991, pp. 463.

[91 Kolagotla, R. K., Shu-Sun Yu, and J.F. Jaja,
"Systolic architectures for finite-state vector quantization,”
Journal of VLSI Signal Processing, vol. 5, no. 2-3, pp.
249-259, 1993.

[10] Kung, S. Y., VLSI Array Processors. Englewood
Cliffs, NJ: Prentice Hall, 1988.

[11] Linde, Y., A. Buzo, and R. M. Gray, "An algorithm
for vector quantizer design,” IEEE. Trans. on
Communications, vol. 28, no. 1, pp. 84-95, 1980.

[12] McCanny, J. V., and M. Yan, "A VQ tree search
system based on bit level systolic arrays," in Proc. Twenty-
Second Asilomar Conference on Signals, Systems and
Computers, vol. 2, Maple Press, San Jose, CA, USA,
1989, pp. 743-7417.

[13] Panchanathan, S., and M. Goldberg, "A systolic array
architecture for image coding using vector quantization,” in
Proc. International Symposium on VLSI Technology,
Systems and Applications, Taipei, Taiwan, ROC, IEEE,
1989, pp. 271-275.

[14] Park, H., and V.K.P. Kumar, "Modular VLSI
architectures for real-time vector quantization,” in Proc.
IEEE ISCAS, Singapore, vol. 1, IEEE, NY, NY, USA,
1991, pp. 188-191.

[15] Qureshi, Q. A., and T. Fischer, "A hardware processor
for implementing the pyramid vector quantizer," IEEE
Trans. ASSP, vol. 37, no. 7, pp. 1135-1142, 1989.

[16} Tsang, K., and Belle W. Y. Wei, "A VLSI
architecture for a real-time code book generator and encoder
fo a vector quantizer," IEEE Trans. on VLSI Systems, vol.
2, no. 3, pp. 360-364, 1994,

[17} Yan, M., and J. V. McCanny, "A bit-level systolic
architecture for implementing a VQ tree search,” Journal of
VLSI Signal Processing, vol. 2, no. 3, pp. 149-158, 1990.

(18] Yan, M., J. V. McCanny, J.V., and Y. Hu, "VLSI
architectures for digital image coding,” in Proc. ICASSP
90. 1990 ICASSP, Albuquerque, NM, USA, vol. 2, IEEE,
New York, NY, USA, 1990, pp. 913-916.

2856

