A SURVEY OF ARCHITECTURES FOR THE DISCRETE AND CONTINUOUS
WAVELET TRANSFORMS

Chaitali Chakrabarti
Dept. of Electrical Engg.
Arizona State University
Tempe, AZ 85287, USA

chaitali@asu.edu

ABSTRACT

Wavelet transforms have proven to be useful tools for several
applications, including signal analysis, signal coding, and
image compression. This paper surveys the VLSI architec-
tures that have been proposed for computing the Discrete
and Continuous Wavelet Transforms for 1-D and 2-D sig-
nals. The proposed architectures range from SIMD arrays
to folded architectures such as systolic arrays and parallel
filters. The SIMD arrays have a size that is proportional to
that of the data sequence and are optimal with respect to
time. The folded architectures, on the other hand, support
single chip implementations and are optimal with respect to
both area and time under the word-serial model.

1. INTRODUCTION

In the last few years there has been a great amount of inter-
est in wavelet transforms, and the interest has been highly
inter-disciplinary. The wavelet transform can be viewed as a
decomposition of a signal in the time-scale plare. There are
several types of wavelet transforms depending on the nature
of the signal (continuous or discrete} and the nature of the
time and scale parameters (continuous or discrete). In this
paper we focus on the realizations of the Discrete Wavelet
Transform (DWT) and the Continuous Wavelet Transform
(CWT) [8] [3]. We assume that the time and scale param-
eters as well as the input and output signals of both the
transforms are discrete; the two transforms differ mainly in
the manner in which the time-scale plane is tiled [10]. The
CWT and the DWT have a very wide range of applications:
from signal analysis and signal coding to numerical analysis.
The large application-domain of these transforms makes the
study of their implementations in VLSI very important.

In this paper we present a survey of VLSI architectures
for computing both the DWT and the CWT. The architec-
tures range from SIMD arrays to folded architectures such
as systolic arrays and parallel filters. The SIMD arrays im-
plement the existing pyramid algorithm for DWT and the
a’trous algorithm for CWT. These arrays have a size that
is proportional to that of the input data sequence and are
optimal with respect to time. The folded architectures, on
the other hand, implement on line versions of the pyramid
and a’trous algorithms. These architectures support single
chip implementations in VLSI and are optimal with respect

2849

Mohan Vishwanath
Computer Science Lab
Xerox Palo Alto Res. Center
Palo Alto CA, 94304, USA

mohan@parc.xerox.com

Robert M. Owens
Dept. of Computer Science
Pennsylvania State University
University Park, PA 16802, USA
owens@guardian.cse.psu.edu

to both area and time under the word serial model.

The rest of the paper is organized as follows. In Section
2 the wavelet transform is briefly described. Sections 3 and
4 describe architectures for the 1-D and 2-D DWT, while
sections 5 and 6 describe architectures for the 1-D and 2-
D CWT. In each section, we first describe implementations
on a SIMD array of processors and then show how it can
be folded into a smaller architecture for single chip imple-
mentation. The SIMD array under study has reconfigurable
interconnection, ie., the interconnection between processors
is controlled by a reconfigurable switch, which if set to 1,
allows the data to pass through it without any delay.

2. PRELIMINARIES

Given a time varying sequence £(t), the wavelet transform
consists of computing coefiicients that are inner products of
the signal and a family of ‘wavelets’. The Wavelet Transform
of a sequence z(i) (sampled version of the continuous signal
£(t)), discretized on a grid whose samples are arbitrarily
spaced both in time b and scale a is given by [10]

t=al+b—1

D DRECL (=9 (1)

i=b

W(b,a) =

where h is obtained by sampling the prototype wavelet, and
L is the size of the support of . In addition, N is the number
of input samples and J is the number of scales. While the
properties of the wavelet transform are heavily dependent on
the properties of the basic wavelet, the architectures listed in
this paper are independent of the wavelet function, making
them highly flexible.

DWT: The structure of the DWT is due to the dyadic na-
ture of its time-scale grid. Here @ = 2*, where k is an integer,
and b is a multiple of a. If N is a power of 2, then J <log N,
and 1 < k < J. At each scale k, the number of samples in
the time dimension is N/2*.

CWT: As in [10], we consider a commonly used version of
the CWT where the scale resolution is logarithmic as in the
case of DWT. In other words, a = 2F for 1 < k& < J, and
J < log N. At each scale k, the number of samples in the
time dimension is N.

Lower bounds: The lower bounds for computing the Wavelet
Transforms have been derived in [11] for single chip imple-
mentations when the I/O is unilocal, place-determinate and

0-7803-2431-5/95 $4.00 © 1995 IEEE

Figure 1: The DWT pyramid for N = 16 and J = 4. h(n)
is the high pass filter and w(n) is the low pass filter.

word-local. If A is the area and T is the computation delay
or period !, then

e For 1-D DWT, AT? > (J?L?*K?), and for the word-
serial model, A > (JLk) and T > N.

o For 1-D CWT, AT? > (N?L*k?), and for the word-
serial model, A > (NLk)and T > NJ.

Lower bounds for the 2-D case can be cbtained by simply
replacing N by N2 and L by L? in the bounds for the 1-D
case. For 2-D DWT, it is conjectured that when the image
is available in the raster-scan format, the area is bounded
by A > (NLk), and the time is bounded by T > N2.

3. 1-D DISCRETE WAVELET TRANSFORM

1-D DWT can be implementéd by the filter bank structure
shown in Figure 1. The structure is based on the recursive
application of the two channel (low frequency and high fre-
quency) subband decomposition. The filter bank structure
for data size N can be implemented in a straight-forward
manner on a SIMD architecture consisting of a linear array
of N processors with reconfigurable interconnection [2]. For
the 1st octave computation, all N processors are used. For
the 2nd octave computation, the N processor array is re-
configured to a N/2 processor array with processors P(2j)
being active, 0 < j < | N/2]. In general, for the mth octave
computation, the N processor array is reconfigured to an
array of size WL_l with processors P(2™7'j) being active,
0<s5< |_2,,{V_‘ |. All the outputs of an octave are computed
at the same time. The weights are broadcast and the partial
results move from one processor to the other. Since the time
to compute an output is L, the computation time for com-
puting J octaves is LJ and the period is also LJ. The period
can be reduced to L in a multigrid architecture of size 2NV —1
(there are N/2' processors in level i, 0 < i < logN), and to
O(1) in a modified multigrid architecture of size L(2N —1).

The SIMD architecture can be folded into a systolic array
or a parallel filter architecture with O(L) multipliers. The
resulting architectures satisfy the word serial model and are
optimal with respect to area and time. The systolic array
architecture of Vishwanath, Owens and Irwin {13] imple-
ments an on-line algorithm called the Recursive Pyramid
Algorithm [12]. In RPA, the first octave outputs are com-
puted every 4 cycles, and all higher octave outputs are com-
puted between two first octave output computations. The

1The period is defined as the time between the initiation of
two consecutive sets of computations.

architecture in [13] consists of a linear systolic array of size
L to compute both the low pass and the high pass outputs,
and a storage unit to store the inputs for higher octave com-
putations. The z-inputs that are required for the first octave
computation are fed in alternate cycles to one end of the ar-
ray, while the inputs that are required for the higher octave
computations are fed in parallel from the storage unit. The
latency of this architecture is 1 clock cycle. The x-inputs
can be fed in every cycle if the architecture is modified to
consist of two linear arrays, one to compute the low pass
outputs and the other to compute the high pass outputs.
The x-inputs are now loaded first into the storage unit and
fed in parallel to the two arrays. The hardware components
of the modified architecture include 2L MACs, LJ storage
units and a simple control unit to generate the appropriate
control signals. The computation time as well as the period
isx~N.

The sample period of the systolic array implementa-
tion is bound by the time that it takes to do a multiply-
accumulate. If, however, smaller sample periods have to
be supported, the systolic arrays have to be replaced by
pipelined parallel filters. The pipelining latches in the par-
allel filter introduce a latency which is greater than 1 cycle,
and consequently, a different scheduling algorithm has to be
used. Chakrabarti and Vishwanath [2] have implemented a
scheduling algorithm called the Modified RPA (MRPA) for
large latencies. The architecture in [2] consists of 2 paral-
lel filters each consisting of L fixed multipliers and a tree
of L — 1 adders, and a storage unit consisting of J serial-in
parallel-out shift registers, each of length L. The :th shift
register of the storage unit stores the inputs required for the
ith octave computation 1 <1 < J. The hardware compo-
nents of this architecture include 2L multipliers, 2(L — 1)
adders, JL storage units and a control unit to generate the
appropriate control signals. The computation time as well
as the period is ~ N. The utilization of both the systolic
and parallel architectures is 100%.

Parhi and Nishitani [9] have also proposed folded archi-
tectures for 1-D forward and inverse DWT. Their architec-
tures make use of register minimization techniques to re-
duce the amount of storage. The forward-backward alloca- ~
tion scheme used there makes the architecture irregular (ie.,
they have complex interconnections). This architecture sup-
ports pipelining to any level but is not easily scalable. The
authors have also proposed a digit-serial architecture where
each level is implemented using a different digit-sized pro-
cessor. The resulting architecture achieves 100% hardware
utilization and has simpler routing.

Recently, Fridman and Manolakos [5] have proposed a
systematic way of generating regular computation structures
using index space transformations on the dependence graph
for 1-D DWT. The resulting architecture consists of L pro-
cessors, and implements a schedule that is very similar to
the RPA. Each processor consists of 2 multipliers, a stor-
age of size J, and multiplexers and demultiplexers to route
the data between storage units of neighboring processors.
While the number of hardware components of this architec-

2850

ture is comparable to that of the other folded architectures,
the control circuitry required to route the data is quite com-
plex. This is because the storage unit is now distributed
over L processors and so additional control is required to
gate the outputs to the right processors. The sample period
of this architecture is bound by the time that is required to
do a multiply-accumulate.

Other architectures for 1-D DWT include the one by

Knowles [6] and the one by Aware Inc. [1]. The architecture
in [6] is historically the first architecture proposed for DWT.
Unfortunately, it is not well suited for VLSI since it uses
large multiplexers. The Wavelet Transform Processor [1]
is the only commercial processor that we are aware of. The
processor consists of 4 MACs and external memory and relies
on software for computing the DWT.
Comparisons: A study of the 1-D DWT architectures show
that while the SIMD array has an area complexity of O(Nk)
and period of LJ, all the folded architectures have an area
complexity of O(LJk) and a period of = N. This makes the
folded architectures optimal under the word-serial model.

4. 2-D DISCRETE WAVELET TRANSFORM

The four channel subband decomposition of 2-D DWT can
be obtained by separable applications of the two channel
decomposition of 1-D DWT 'in the horizontal and vertical
dimensions. The subband structure for ¥ x N data can be
mapped very easily onto a SIMD array of N x N processors.
If row computations are followed by column computations
in each octave, then for the mth octave, the array is re-
configured to form N/2™~! row arrays of size N/2™ ™! each
for the row computations and is reconfigured to form N/2™
column arrays of size N/2™~! each for the column com-
putations. Since all the outputs of a particular octave are
computed at the same time, the computation time as well
as the period is 2LJ.

The SIMD architecture has been folded into an archi-
tecture which consists of 2 systolic arrays to do the compu-
tations along the rows and and 2 parallel filters to do the
computations along the columns in [13]. Two rows of inputs
are fed in to the two systolic arrays every 2 cycles. The
systolic arrays as well as the parallel filters each consist of
L programmable multipliers. The scheduling scheme of this
architecture is based on RPA in 2-D. The hardware compo-
nents of this architecture include 4L MACs, 2N(L+ 1)+ LJ
storage cells, and a control unit. The computation time as
well as the period is & N? cycles. For high sample rate ap-
plications, the systolic arrays can be replaced by pipelined
parallel filters. The resulting architecture consists of 2 par-
allel filters to do the row computations, 2 parallel filters to
do the column computations, a storage unit of size 2N (L+1)
between the row and the column filters and a storage unit of
size LJ between the column and the row filters. Compared
to the architecture in [13], only one (instead of two) row of
input is fed into one row filter. The computations are sched-
uled using MRPA in 2-D resulting in a computation time of
= N%.

In 2-D non-separable DWT, the computations in each
level cannot be separated into row and column computa-
tions. Here the N x N SIMD array is configured to form an
array of size (2,"L_1 X E,—,{‘L_T) for mth octave computation.
All the outputs of a particular octave are computed at the
same time and the computation time as well as the period
is L?J.

The above SIMD implementation has been folded into
an architecture with O(L?) multipliers by Chakrabarti and
Vishwanath in [2]. The architecture consists of 2 paral-
lel filters, each consisting of L? programmable multipliers
(programmable since each filter computes the outputs of 2
bands) and a storage unit of size NL. This architecture
implements the MRPA algorithm in 2-D. The windows of
the first octave computations are centered in even-numbered
rows, while the windows for higher octave computations are
centered in odd-numbered rows. The hardware components
of this architecture include 2L% multipliers, 2(L? —1) adders,
N L storage cells, and a control unit. The computation time
as well as the period is &2 N2.

Other architectures for 2-D DWT include the one pro-
posed by Lewis and Knowles [7] and the one by Denk and
Parhi in [4]. The architecture in [7] uses a specific wavelet,
namely the Daubechies 4-tap filter, and as a result it does
not work efficiently for other wavelets. The 2-D DWT archi-
tecture in [4] uses lapped block processing techniques since
the transform operates on overlapping blocks of data. It uses
register minimization techniques to reduce storage. This

comes at the expense of scalability and complex routing.
Comparisons: A study of the asymptotic area complexities
show that all the folded architectures have an area complex-
ity of O(NLk) while the SIMD architectures have a com-
plexity of O(N?k). The period of the folded architectures is
A N? while that of the SIMD arrays is L2J (or 2LJ for the
separable case).

x(n)

C s 1stoctave outputs

e
< 13 2nd octave outputs

- C
=

¥V 7§

P 3rd octave outputs

Figure 2: Reorganized ‘atrous’ computational structure for

1-D CWT [10]

5. 1-D CONTINUOUS WAVELET TRANSFORM

1-D CWT can be implemented by the filter bank implemen-
tation based on the reorganized “a trous” computational
structure of [10] (see Figure 2). In this implementation there
are 2'7! cells at the jth octave, with each cell working at

2851

the rate of 1/2? 7 th that of the cell of the first octave.

The above structure can be mapped onto a SIMD archi-
tecture consisting of a linear array of N processors. For the
(k + 1)th octave computation, the N processor array is re-
configured to form a set of 2¥ arrays, each of size N/ 2%, The
computation time for the (k + 1)th octave is L2* and the
period is L(27 —1). The SIMD architecture can be folded
into a systolic array/parallel filter architecture. We consider
two cases: when J outputs are computed every cycle and
when 1 output is computed every cycle [2].

The systolic array and the parallel filter architectures
for the case when J outputs are computed every cycle, con-
sist of J computation units. The output of the low pass
filter of the jth computation unit is sent to the (j + 1)th
computation unit. In both architectures, the inputs to the
jth computation unit have to be subsampled by a factor of
29=1_ In the parallel filter architecture this is achieved by
storing the data in a delay line of size 2/~ [, and tapping
the delay line every 2! delay units. In the systolic array
architecture, this is achieved by storing the partial results
in registers of size 2! in between consecutive processors.
The total number of multipliers, adders and storage units
are 2JL, 2J(L — 1) and (27 —1)(L — 1) respectively. The
area complexity is O(N Lk) and the period is = N.

For the case when there is only 1 computation unit (1

output is computed every cycle), the parallel filter and the
systolic array architectures implement an on-line algorithm
[2] to schedule the outputs of J octaves. The storage unit
consists of J subunits of storage cells, the number of cells in
the kth subunit being 2*71L, 1 < k < J. In every cycle, a
data is read into the storage unit and L data are read out
from the storage unit. The parallel filter and the systolic
array architectures differ in the way the data is read out.
The hardware components for both the architectures include
2L multipliers, 2(L — 1) adders and (27 — 1)L storage cells.
The area complexity of both the architectures is O(N Lk)
and the period is &~ N J.
Comparisons: A study of the asymptotic area complexities
show that all the folded architectures have a complexity of
O(N Lk) while the SIMD array has a complexity of O(Nk).
The folded architectures for the case when only 1 output is
computed per cycle has a period of = NJ, and is optimal
with respect to both area and time under the word-serial
model.

6. 2-D CONTINUOQOUS WAVELET TRANSFORM

2-D CWT can easily be mapped onto a 2-D array of (¥ x
N) processors. For the (k + 1)th octave computation, the
(N x N) processor array is reconfigured to form a set of 4*
arrays, each of size N/2%¥ x N/ 2*. The computation time for
the (k+1)th octave is L?4* and the period is ~ L?(47 —1)/3.

The systolic array and the parallel filter architectures for
2-D CWT for the case when J outputs are computed every
cycle are extensions of the ones that we proposed for 1-D
CWT. In the parallel filter architecture, each parallel filter
consists of L? multipliers grouped in L subunits with L mul-

tipliers and L — 1 adders per subunit. Similarly, in the sys-
tolic array architecture, each filter consists of L? processors,
grouped in L subunits with a linear array of L processors
in each subunit. In both the architectures, the inputs to
the jth filter are subsampled along the rows and along the
columns by a factor of 227!, The total number of multi-
pliers, adders and storage units are 2JL%, 2J(L? — 1) and
(27 = 1)(N 4 L){(L — 1) respectively. The area complexity of
both the architectures is O(N?Lk) and the period is =~ NZ.

7. REFERENCES

{1] Aware, Inc., Cambridge, MA. Aware Wavelet Trans-
form Processor (WTP) Preliminary, 1991.

{2] C. Chakrabarti and M. Vishwanath. Efficient realiza-
tions of the discrete and continuous wavelet transforms:
from single chip implementations to SIMD parallel com-
puters. To appear in the IEEE Trans. on Signal Pro-
cessing.

[3] I. Daubechies. The wavelet transform, time-frequency
localization and signal analysis. IEEE Trans. Info. The-
ory, 36(5):961-1005, Sept 1990.

[4] T. Denk and K. Parhi. Calculation of minimum num-
ber of registers in 2-d discrete wavelet transforms using
lapped block processing. Int. Symp. on Circuits and
Systems, pages T7-81, 1994.

[5] J. Fridman and E.S. Manolakos. Distributed Memory
and Control VLSI Architectures for the 1-D Discrete
Wavelet Transform. VLSI Signal Processing VII, Oct
1994.

[6] G. Knowles. VLSI architecture for the discrete wavelet
transform. Elec. Letters, 26(15):1184-1185, Jul 1990.

[7] A.S. Lewis and G. Knowles. VLSI architecture for 2-d
daubechies wavelet transform without multipliers. Elec.
Letters, 27(2):171-173, Jan 1991.

[8] S. Mallat. Maultifrequency channel decompositions of
images and wavelet models. IEEE Trans. Acoustics
Speech and Sig. Proc, 37(12):2091-2110, Dec 1989.

[9] K. Parhi and T. Nishitani. VLSI Architectures for Dis-
crete Wavelet Transforms. IFEE Trans. on VLSI Sys-
tems, 1(2), Jun 1993

[10] O. Rioul and P. Duhamel. Fast algorithms for wavelet
transforms. IEEE Trans. on Information Theory,
38(2):569-586, Mar 1992.

[11] M. Vishwanath. Time-Frequency Distributions: Com-
plexity, Algorithms and Architectures. PhD thesis,
Pennsylvania State University, May 1993.

[12] M. Vishwanath. The recursive pyramid algorithm for
the discrete wavelet transform. IEEE Trans. on Signal
Processing, March 1994.

[13] M. Vishwanath, R.M. Owens, and M.J. Irwin. VLSI
architectures for the discrete wavelet transform. To ap-
pear in the IEEE Trans. Circuits and Systems.

2852

