SYSTEM AND ALGORITHM IMPLEMENTATION TECHNIQUES ON THE TMS320 FAMILY

Panos Papamichalis, Jay Reimer, Jon Rowlands
Texas Instruments
P.O. Box 655474, MS 446
Dallas, TX 75265, USA

ABSTRACT

The widespread use of DSP techniques in many signal
processing applications has made algorithm implementa-
tions a task that engineers face frequently. However, the
real-time constraints that most of these applications have,
often clash with the need to do the implementation
quickly and with minimal pain. This paper examines
tools and techniques that have been created for and ap-
plied on the TMS320 family of digital signal processors
to facilitate such development. The use of C compilers
speeds up the implementation, while software and hard-
ware development tools make debugging easier. Some
techniques of algorithm implementation are examined in
the context of specific applications.

1. INTRODUCTION

Digital signal processing is no longer a term used only by
experts. DSP techniques have been used in consumer
products, such as CDs, answering machines, modems,
and toys, and now they have made a strong entry into
cellular telephony and, the latest buzzword, the Informa-
tion Superhighway. As the breadth of the applications
increases, more and more engineers need to design sys-
tems using such techniques. In such cases, the simplest
approach is to use existing off-the-shelf programmable
DSP devices. The reason for needing fast DSP devices is
real-time implementation, a common feature of all the
examples above. To make sure that there is minimal
waste of computational resources. the algorithm encoding

Program RAM RAM ROM
Cache Block 0 8lock 1 4Kx32
64x32
g TN

+ 33 $
cR DAMA
Floating Floating Sourca
Point Point Dast
and and XER Caual
Integer Integer Laptral
Muyttiplier

8 Extendad

Zlndow Roos

f‘Andnd A l rAnd.-f’ i

should be done in assembly language. However, this
makes code development and debugging a time-
consuming and tedious task. So, high-level language
availability is very desirable, and almost all of the cur-
rently available DSP devices come with such high-level
language support, typicaily in the form of C compilers.
The C compilers for the TMS320 family of processors,
have reached a very high efficiency level, which mini-
mizes the need of assembly code, as will be discussed
below.

Development of efficient algorithms also requires the
ability to understand which areas of the code are the most
important. It is also quite often valuable to do the devel-
opment in situ. Both of these capabilities are made avail-
able through the debugger and emulation products that
support the TMS320 family.

2. DSP ARCHITECTURES

There are certain architectural characteristics that define
the digital signal processors. Figure 1 shows the block
diagram of such a processor, the TMS320C30, that can
use floating-point arithmetic [1]. These characteristics
include a hardware multiplier, single-cycle execution of
instructions, high execution speed and on-chip memory.
The objective behind all of them is to supply a high
throughput for real-time applications.

Also, these devices typically use a Harvard architecture,
where the program and data spaces are separated in order
to avoid bus conflicts that would have
an impact on the execution speed.
However, newer devices have been
e returning to a von Neuman architec-
OSTRB | ture, but with multiple buses accessing
XRAW the same memory space. As an ex-
XD (12-0) ample, the TMS320C2x and
TMS320C5x generations of TI DSPs
have a modified Harvard architecture
on-chip, while the TMS320C3x and
TMS320C4x generations have a hy-
brid Harvard/von Neuman character.

XRDY

!

The early generations of DSP devices
were envisioned more as embedded

Figure 1. Block Diagram of the TMS320C30 Architecture.

2845 0-7803-2431-5/95 $4.00 © 1995 IEEE

processors 10 be programmed primarily in assembly.
Now, though, C compilers have become almost indispen-
sable as development tools and the newer architectures
have been enhanced to make compilation more efficient.
Register files, a rich set of addressing modes, and the
availability of a software stack help the compiler per-
formance.

3. AN APPLICATION EXAMPLE

A large variety of algorithms have been implemented on
the TMS320 family of processors, and many of these
algorithms are available either as freeware or as licens-
able code. To discuss the aspects of algorithm imple-
mentation on DSP devices an application example, the
MPEG-1 audio standard [2], will be used.

i/ . 32.suPb?"d O — - . Entropy
Audio Filter Bank UX Coder
Samples ‘ — k
T Nodel v > PDFs i
Power BRt :
: > Sp"octr:m - Assignment | : L,
| Encoder Estimation : A1
..................................... s SOOI e rorere
2 32 Subband Entro :
: | Synthesi . izer |t < Y | g
Audio 7 Filter Bank DE- Decoder |-
Samples : MUX :
: 4 PDFs |
Bt |
: o | Agsi
: Decoder o

Figure 2. Block Diagram of the MPEG-1 Encoder and Decoder

The MPEG-1 audio standard (encoding and decoding for
algorithm layers 1 and 2) has been implemented in real
time on TMS320C3x floating-point processors. Figure 2
presents the encoder and the decoder of the MPEG-1
audio standard. In this example the implementation is on
a single processor, and it took some ingenuity to make
this computationally intensive algorithm fit into the
available resources of the device.

The encoder and decoder were implemented mostly in
the C language, using assembly language in critical
blocks. Figure 3 compares the use of C and assembly
language in the core algorithms. The functions chosen for
optimization in assembly language are clearly execution
*“hot spots”.

Both the encoder and decoder require “traditional” DSP
operations such as linear filtering, cosine and Fourier
transforms, operations which make good use of the spe-

Channel

Instrs| Instrs| Cycles| Cycles| # Execs

% %\ per Instr|

Encoder C 4558| 86%| 194864 50% 42.8
Encoder Asm 744| 14%{ 191773} 50% 257.8
Decoder C 2296| 87%| 56905] 29% 24.8
Decoder Asm 347 13%|137135| 71% 395.2

Figure 3. Comparison of C and Assembly Language in
the MPEG-1 Encoder and Decoder

cialized DSP architectural features of the ‘C3X. Several
of these functions were reused directly from the TMS320
applications library, where they are available already
optimized. Conversely, there are many operations with
little structural regularity, such as the encoder bit assign-
ment and perceptual model. Their execution time is
dominated by branches and data structure access. These
operations cannot use the DSP architectural features
as efficiently as dataflow operations, and the C
compiler produced comparable results to hand op-
timization in these cases, with reduced effort. Fi-
nally, there are operations which fall between these
extremes. It was found that the compiler’s under-
standing of the ‘C3X architecture allowed it to pro-
duce efficient code in most such cases, particularly
once the strengths and limitations of the optimizer
were understood.

The internal code and date memory and the instruc-
tion cache of the ‘C3X devices were used to reduce
the external memory bandwidth requirements of the
algorithms. External data was copied into the inter-
nal memory before processing, and code loops were
optimized to fit inside the instruction cache. Figure
4 summarizes the effect of these optimizations. With
the cache on, the cost of a wait state was
significantly reduced. (The normalized cost of a wait
state with the cache off was less than one cycle because
of idle states in the memory interface.)

Cache Normalized Execution Time
Off 1.00 + 0.78 * number of wait states
On 0.91 + 0.25 * number of wait states

Figure 4. Normalized Execution Time of the MPEG-1
Decoder vs Number of External Memory Wait States

4. PROGRAMMING IN C VERSUS ASSEMBLY

Since the DSP devices were developed for computa-
tionally-intensive, real-time applications, it was initially
envisioned that all the programming would be done in
assembly. And this still holds true when we come to the
most time-critical sections of the algorithm. However,

2846

the emphasis has been gradually shifting towards the use
of high-level language for most of the non-repetitive and
non-time-critical code. This makes the flow of the im-
plementation much easier to follow (and debug). The
compiler technology has made significant strides to get
close to the hand-assembled code for a device. Figure 5
shows an example of that evolution for the C compiler
for the TMS320C30. The code size and the execution
time in cycles are shown for an audio decoding algo-
rithm. The levels of optimization, going from zero (no
optimization) to two, roughly correspond to the evolution
of the compiler over time.

Cycles

600000
00 M Code Size

500000
400000
300000
200000
100000

0

Level Level Level
0 1 2

Figure 5. Performance of the TMS320C30 C Compiler
on an Audio Decoding Algorithm.

5. ALGORITHM IMPLEMENTATION ISSUES

To write efficient code for a real-time application, there
are some recommended practices that presume a good
understanding of the available resources of the device.
The TMS320 series devices include a number of archi-
tectural resources for DSP applications. Some of these
can be optimized tactically, or locally, such as:

fast multiply and multiply-accumulate operations
_arithmetic and address register files

parallel and pipelined execution units

delayed branches

zero overhead loops

Compilers are increasingly effective at tactical optimiza-
tions, particularly of the register file usage, instruction
scheduling and control flow. For recent TMS320 devices,
the C compiler generates code which can approach the
efficiency of hand optimized code using all of the re-
sources from the above list.

Some resources must be optimized strategically, at the
level of the system design. This is usually because they
must be dedicated to one function over an extended pe-
riod. On the TMS320 devices such resources include:

e fast internal memory

e instruction cache, due to size and replacement policy
bit reversed and circular addressing modes, due to
data address alignment requirements

e peripherals such as DMA controllers, timers, serial
ports and interprocessor communications links

e interrupts

Strategic optimizations by definition may have wide-
spread implications for the rest of the system, making
them difficult for a compiler to optimize using only local
information. However an initial C language algorithm
implementation is useful in confirming the effect of
strategic optimizations, since it provides the most flexi-
bility for experimentation.

Fast internal memory often allows two accesses per in-
struction cycle, required by many DSP operations includ-
ing the multiply-accumulate. This often means that inter-
nal memory should be reserved for data. If external data
accesses can be predicted, then the internal memory can
be used as a cache by copying data to it for processing. If
external accesses are not predictable, then executing code
from internal memory can increase the bus bandwidth
available for data. The ‘C3X instruction cache also in-
creases available bus bandwidth. Inner loops can execute
entirely from the cache if optimized appropriately. Inter-
rupts disrupt the cache by causing multiple reloads, how-
ever this can be minimized by placing interrupt code in
internal memory, which does not require or use the
cache.

The use of fixed-point versus floating-point is a complex
subject that should take into account the need for preci-
sion in the algorithm, the available capabilities in the
processor, and the computational needs of the implemen-
tation. More often than not, the choice is dictated by
chip cost considerations, since the fixed-point devices are
typically cheaper than the floating-point ones.

6. SYSTEM IMPLEMENTATION ISSUES

When dealing with the overall system that is handling an
application, there are issues associated with external in-
terfaces of the DSP device. Fast and slow-memory ar-
rangement, use of serial and parallel ports, as well as
DMA should be taken into consideration. To facilitate
such interfaces while permitting the developer to focus
on the development of the algorithm, operating systems
for DSPs have been developed. Most TMS320 devices
use the SPOX operating system, developed by Spectron
Microsystems. You can also use libraries of functions
available with such operating systems or independently,

2847

but you should be careful with the overhead imposed by
such functions. Occasionally, this overhead is more than
is necessary in a particular application because the library
developers want to make a function more generic.

Two current trends in applications are multitasking and
multiprocessing, pointing to the two different ends of the
applications spectrum. In multitasking, you try to have
multiple applications running concurrently. This is at-
tractive in muitimedia environments where you want to
use the same device for multiple purposes. However,
partitioning the resources so that no application runs out
of MIPS or memory is a challenging task. On the other
hand, there are applications that have such a high compu-
tational load that no single processor can keep up with
them. In this case, the algorithm is partitioned to run on
multiple processors. Careful selection of processors with
rich interconnection capabilities, such as the
TMS320C40 can help significantly in the implementa-
tion.

7. DEBUGGING TOOLS

In implementing an algorithm, the available debugging
tools can make a significant difference in the ease of de-
velopment and the elimination of bugs. The TMS320
family of processors comes with Windows-based tools
that provide debugging capabilities in both the C and the
assembly level. The supplied profiler can help to identify
the segments of the code where most of the computation
is done, and pursue optimization there. This is benefi-
cial, since the code can be developed initially in C. The
obvious benefits are a shorter amount of time is spent in
developing an initial functioning version of the code,
-adaptations or variations can be more readily developed,
and a maintainable reference for the final optimized ver-
sion is available.

For the board-level implementations, there is scan-based
emulation available with an interface similar to the
simulator. This benefits the developer since there is no
need to learn a different debugging environment at any
stage from initial simulation to final target system debug.
It further benefits the target system design by not impos-
ing higher speed design consideration due to probes on
the external busses or due to multiplexing of a monitor
interface with the external memory interface. Also, since
control of the devices is accomplished via the scan inter-
face there is no need to reserve any of the on-chip mem-
ory or interrupt resources specifically for debug support.

8. AVAILABLE APPLICATIONS ON TMS320

A significant number of applications have been devel-
oped for the TMS320 family of digital signal processors.
These algorithms cover the areas of speech coding and
recognition, control, telecommunications, etc. Assembly
code for fundamental functions, such as FIR and IIR fil-
ters, FFTs, and extended-precision arithmetic can be
found in the applications chapters of the corresponding
User's Guides. The same code plus freely available al-
gorithm implementations, such as the G.721 standard, are
available in electronic form on the TI Bulletin Board
System. A number of application notes are available on
several volumes of application books [3]. Furthermore,
there is a list of algorithms available from third parties
that can be licensed [4].

9. FUTURE TRENDS

The trend seems to be an acceleration in technology
which in turn often means that product design-cycles
must be shorter because product life tends to be shorter.
The result is that it must be simple and effective to design
and develop systems. Programmable DSPs offer an ef-
fective means to quick development and meet perform-
ance objectives because of several reasons. One is that
the technology of the devices themselves has led to
greater performance and greater levels of integration. A
second is that the tools used in development have also
improved, providing greater insight and understanding of
how a particular system operates. A third is that the in-
creasing amount of DSP literacy and the maturity of the
technology in the market has produced a resource of al-
gorithms and peripherals that can be utilized in the next
round of designs.

REFERENCES

[1] TMS320C30 User’s Guide, Texas Instruments, Inc.,
1991.

[2] ISO/IEC IS 11172-3 - Coding of Moving Pictures
and Associated Audio for Digital Storage Media At Up
To About 1.5 Mbit/s - Part 3: Audio, ISO 1993

[3] Digital Signal Processing Applications with the
TMS320 Family, Prentice Hall, vol. 1 (Kun Lin, Ed.,
1987), vol. 2 (P. Papamichalis, Ed., 1991), vol. 3 (P.
Papamichalis, Ed., 1991)

[4] TMS320 Software Cooperative, Texas Instruments,
Inc., 1994.

2848

