MAT2DSP - A TOOL FOR EVALUATING IMPLEMENTATION
COMPLEXITY OF SIGNAL PROCESSING ALGORITHMS

Benjamin Friedlander
Dept. Elec. & Comp. Eng.
University of California
Davis, CA 95616

ABSTRACT

MAT2DSP is a MATLAB toolbox, currently un-
der development, whose function is to estimate the
implementation requirements of algorithms specified
in the form of a MATLAB program. This toolbox
is aimed at providing researchers developing advanced
signal and image processing algorithms, a quick and
convenient way of estimating what would be needed
to implement their algorithm on a specified processor.
MATZ2DSP analyzes the user program and generates
reports on its computational requirements.

1. INTRODUCTION

The development of advanced signal processing
systems starts with the design of the processing al-
gorithms. Only after the algorithms have been spec-
ified (in the form of a mathematical description or a
flow-diagram) does the hardware/software design pro-
cess begin. A number of mathematical analysis pack-
ages are available today for aiding algorithm devel-
opment. These tools, which are widely used by the
research community, include commercial mathemati-
cal software packages such as MATLAB, Mathematica,
XMath, and others.

These mathematical analysis packages make it rel-
atively easy to evaluate the performance of the al-
gorithm (in terms of detection probabilities, classifi-
cation probabilities, image quality, etc.). However,
none of the existing algorithm design tools provide ad-
equate information about the cost of implementing a
given algorithmic solution. Yet the algorithm chosen
to solve a particular problem can have a strong impact
on the complexity and cost of the final implementation.
Since there are often multiple algorithmic solutions for
any given problem, having different cost/performance
trade-offs, it is important to have the ability to per-
form these trade-offs.

This work was supported by the US Air Force under con-
tract no. F33615-93-C-1312, sponsored by the Advanced Re-
search Projects Agency.

2841

In this paper we describe a software tool, cur-
rently under development, which is designed to pro-
vide the algorithm developer with an analysis of the
implementation costs of a given algorithm. This tool is
being implemented as a MATLAB toolbox, which we
named MAT2DSP. However, the same methodology
can be used to develop versions of this program which
will work with other mathematical software packages.

Giving the researcher responsible for developing
advanced algorithms such a tool will speed up signif-
icantly the algorithm development process by quickly
eliminating approaches which clearly fail to meet the
system constraints, and focusing time and energy on
the practical approaches. It should be emphasized that
the tool does not have to be precise — approximate es-
timates of cost would be quite adequate at this early
stage of the design process. Qur main objective is to
create a tool which is convenient to use, and which can
be easily modified to suit the needs of the user. '

Clearly, there is a trade-off between the complex-
ity of the MAT2DSP program and the accuracy of the
estimates it can provide. In order to provide very accu-
rate results the program will have the capture the full
details of the implementation. This is tantamount to
performing a complete hardware/software simulation
of the intended implementation. This is very definitely
not our intention. Qur goal is to provide the best per-
formance estimates possible using a relatively crude,
high-level representation of the intended implementa-
tion.

2. THE APPROACH

The computational part of MATLAB, and other
high-level signal processing programs, is built from a
set of primitive functions such as: vector-vector and
vector-matrix multiplies, FFT, convolution, filtering,
solution of a set of linear equations, eigenvalue decom-
position of a matrix, and so on. These functions oper-
ate on data vectors or arrays. Advanced signal process-
ing functions of arbitrary complexity can be composed
from these primitives.

0-7803-2431-5/95 $4.00 © 1995 |[EEE

We start with a MATLAB program, which we
refer to as the ‘target program’, which implements a
given signal or image processing algorithm. The tar-
get program consists of one or more M-files and func-
tions. The MAT2DSP program (which is also written
in the MATLAB language) operates on this program
and produces one of several user selected reports which
contains information about the computational require-
ments of the algorithm and an estimate of its runtime
on a user specified processor or mix of processors. In
particular, the report contains a detailed breakdown of
the computational primitives used by the target pro-
gram.

The generation of this report involves three sepa-
rate steps:

1. In the first step the target program is translated
into a modified version of the program. This modified
program is another MATLAB program which, when
executed, will perform all the computations of the orig-
inal program, and in addition, will generate a detailed
record of what took place. We refer to this record as
the ‘primitive list’.

2. In the second step, the modified program will be ex-
ecuted to generate the primitive list. This list contains
detailed information about the number and types of
computations performed by the target program, and
provides the “raw material” from which various re-
ports can be generated. This information character-
izes the signal or image processing algorithm imple-
mented by the target program, and is independent of
the hardware on which the algorithm will be eventu-
ally implemented.

3. In the third step we run the report generator pro-
gram. This program uses the primitive list and a
database, to estimate the runtime of the target pro-
gram on a user specified processing hardware. The
database contains information about the runtimes of
the computational primitives on different hardware soft-
ware platforms. Different types of reports of varying
levels of complexity can be generated based on the
data contained in the primitive list and the database.

In the following sections we describe the three
components of the MAT2DSP program in more de-
tail. It should be emphasized, however, that this pa-
per presents one possible implementation of the pro-
gram. We are currently exploring alternative imple-
mentations, and it is quite possible that the final pro-
gram will be quite different from the preliminary ver-
sion which is described here.

2. THE AUTOMATIC TRANSLATOR

The automatic translator is a special compiler for

the MATLAB language, which generates a modified
MATLAB program. The modified program performs
the tasks of the original program, and also records the
number of primitive calls (calls to the set of internal
functions) and the parameters used in each call. The
set of internal functions includes all MATLAB internal
functions. The user may add additional functions or
script files to the set of internal functions. Any exter-
nal function which is called from the input program is
translated in the same fashion. For example, suppose
that our input program is prog, and it calls the exter-
nal functions funcl and func?2, and funcli calls the
external function func3. The translator will generate
the following modified MATLAB programs: tprog,
tfuncl, tfunc2, tfunc3. These are the modi-
fied versions of prog, funcl, func2, func3,re-
spectively.

Internal MATLAB where expressions such as x+y
are replaced by madd (x,y) and expressions such as
fft(x) are replaced by mfft(x). The functions
madd and mfft, in addition to performing the addi-
tion and £ft operations, record the parameters used
in each call. As other compilers, the translator re-
ports to the user the presence of errors in the source
program.

There are two parts to compilation: analysis and
synthesis. The analysis part breaks up the source pro-
gram into constituent pieces and creates an interme-
diate representation of the source program. The syn-
thesis part constructs the desired target program from
the intermediate representation.

The analysis usually consists of three phases:

1. Lexical analysis, in which the stream of characters
making up the source program is read from left-to-
right and grouped into tokens that are sequences of
characters having a collective meaning.

2. Syntax Analysis, in which tokens are grouped hier-
archically into nested collections with collective mean-
ing. In compilers syntax analysis is called parsing.

3. Semantic analysis, in which certain checks are per-
formed to ensure that the components of a program
fit together meaningfully. The semantic analysis phase
checks the source program for semantic errors and gath-
ers type information for the subsequent code genera-
tion phase.

The translator has a simpler structure than that
of a full-blown compiler. It has only two blocks: the
lexical analyzer and the syntax directed translator.
The lexical analyzer converts the stream of input char-
acters into a stream of tokens that becomes the input

2842

for the following phase - the syntax directed transla-
tor. The syntax-directed translator is a combination
of syntax analyzer (parser) and code generator. As
in most compilers, the interaction between the lexi-
cal analyzer and the parser is implemented by mak-
ing the lexical analyzer a subroutine of the parser.
Upon receiving the “get next token” command from
the parser, the lexical analyzer reads input characters
until it can identify the next token. The current token
being scanned is usually referred to as the lookahead
symbol.

We have chosen to use the recursive descent pars-
ing method described in [1]. Recursive descent parsing
is a top-down method of syntax analysis in which we
execute a set of recursive procedures to process the
input. In general, the selection of a production for
a non-terminal may involve trial and error. In other
words, we may have to try a production and backtrack
to try another production if the first is found unsuit-
able. Most production in the above syntax directed
definition of MATLAB do not require backtracking.

The translator has two main routines: The pars-
ing routine (parse) and the lexical analyzer routine
(Lexan). The translator is activated by the MATLAB
line parse(progname) where progname is a string
representing the name of the MATLAB program to be
translated. The parsing routine calls 1exan whenever
it needs a new token.

It is worth noting that in MATLAB the distinc-
tion between function names and identifier names is
not trivial. Consider, for example the statement y =
cos(2*pi*k*n/N) in which cos is interpreted as
the MATLAB internal function cos. On the other
hand, the cos in cos=sqrt(1-sin~2(alpha))
is interpreted as an identifier. The lexical analyzer
must therefore be able to determine for each alphanu-
meric string if it is a function or identifier. This is
implemented by generating and maintaining a list of
all existing identifiers called varlist. At the beginning
of the parsing procedure this list is empty. Whenever
an identifier is observed in a global declaration state-
ment or in the left side of an assignment statement, it
is added to varlist. When the lexical analyzer identi-
fies an alphanumeric string it checks if it appears in
varlist. If it does, the current token is ID (identifier).
Otherwise, it is either IDPRIM (MATLAB primitive)
or IDFUN (an external MATLAB function).

3. THE PRIMITIVE LIST GENERATOR

The modified program created by the automatic
translator will next be run to generate the “raw” list
of primitives. Each entry in the list consists of:

(i) the name of the primitive
(ii) the input type (real, complex, string)
(iii) the input size (dimensions)

(iv) a count of the number of times that particular
entry was recorded

The “raw” list can be sorted and condensed to generate
a summary list in which each type of primitive appears
only once, together with statistics of the input size.

The computational primitives which appear in the
list, include the MATLAB primitives, and may also
include any user defined functions. If a certain DSP
function will be implemented by a special purpose hard-
ware, we will declare it to be a primitive, so that it will
appear on the primitive list, rather than be decom-
posed into the MATLAB primitives which implement
it.

The summary list described above does not pre-
serve information about important aspects of the pro-
gram such as sequencing of operations, and the pres-
ence of loops. We are currently developing a more
sophisticated version of the primitive list generator
which creates a hierarchical block representation of
the program. This block representation preserves se-
quence information and identifies the presence of loops
and branch points. The hierarchical nature of the rep-
resentation makes it possible to generate reports con-
taining a desired level of detail.

4. THE DATABASE

The database contains information about the im-
plementation requirements of different primitives on
different hardware/software platforms. The database
is designed so that it can grow over time by includ-
ing information about new types of hardware, as well
as more detailed information about the hardware al-
ready included in the database. In its present form the
database consists of two tables: one containing prim-
itive related data, and the other containing processor
related data.

The primitive table contains a listing of all the
computational primitives and their attributes, and the
name of the target processor. By default, all the prim-
itives are assumed to run on a single target processor.
However, the user can define an arbitrary mix of pro-
cessor. This is useful in cases where special purpose
processors are used to speed up the implementation.
For example, the main program may run on a general
purpose DSP chip, while the FFTs may be performed
on an FFT chip.

2843

The processor table contains a listing of target
processors and their characteristics (fixed point, float-
ing point, numerical precision, etc.). For each proces-
sor and each computational primitive, the table con-
tains benchmark data on run-time vs. input size. Later
version of the program will also include information
about memory requirements.

At the present time benchmark data was collected
only for MATLAB programs running on the same work-
station as the MAT2DSP program. This data is being
used to test how well the MAT2DSP program is able
to predict runtimes of MATLAB programs. Next we
plan to collect data for ‘C’ programs running on se-
lected workstations. The ultimate goal is to incorpo-
rate in the database information about execution times
on commercial DSP chips (such as TI, MOTOROLA,
AT&T).

A number of alternative methods for construct-
ing the database are being considered. At the two
extremes we have a database constructed entirely from
measured data, and one constructed entirely from com-
puted data. The first means that all the data in the
database was measured by running appropriate bench-
marks on the target processor. The second means that
all the data was computed from a few basic numbers
(such as the number of machine cycles needed to per-
form addition, multiplication and memory access) us-
ing theoretical formulas for the execution times of the
various primitives. Data based on measurements will,
presumably, lead to more accurate performance pre-
dictions. However, the collection of such data is rela-
tively costly and time consuming. Computed data is,
presumably, less accurate, but much easier to collect,
modify, and maintain.

5. THE REPORT GENERATOR

The report generator combines the information in
the primitive list and the database to provide a report
on the implementation requirements of the algorithm.
A variety of reports, of various levels of complexity,
can be generated. Initially we generate estimates of
runtimes by type of primitive, and an estimate of the
total runtime. In particular, the report provides a list
of all the primitives used by the program, and the frac-
tion of the total runtime used by that primitive. This
list make it possible to identify quickly computational
bottlenecks, and where to put most of the implemen-
tation effort. :

Later versions of the report generator will take
into account the more detailed program flow and the
ability to pipeline or parallelize certain primitives or
combinations of primitives. It will also take into con-

sideration more detailed information about the proces-
sor architecture and examine potential I/O or CPU to
Memory transfer bottlenecks. It is possible to incor-
porate a considerable amount of intelligence into the
report generator, using the kind of reasoning employed
by an expert hardware/software designer.

It should be emphasized that the proposed soft-
ware tool does not have to provide extremely precise
estimates. What is needed is to give the algorithm de-
veloper a rough idea of what is needed to implement
a given algorithm, so that he can do an approximate
cost/performance trade-off, to see which of several pos-
sible solutions will fit the system constraints. Once a
given algorithm is selected and specified, its precise im-
plementation requirements will be determined during
the hardware/software design process.

We believe that a report generator of a relatively
modest level of complexity will be adequate to achieve
the stated goals of the MAT2DSP toolbox.

6. CONCLUSIONS

The MAT2DSP software tool described above is
at a preliminary stage of development. Qur intention
is to develop a toolbox which can be expanded and
modified over time, either by the developer or by the
end user. Initially the toolbox will provide runtime es-
timates based on straightforward addition of the run-
time estimates of the primitives from which the pro-
gram is composed. Later versions will take into ac-
count more detailed information related to dataflow,
program overhead, and data transfer times. The data-
base will also evolve over time to incorporate more
hardware /software platforms and more detailed tim-
ing information.

Qur plan is to make it possible for researchers
who develop advanced signal processing algorithms to
get quick estimates of what would be required to im-
plement their algorithms. They can do this without
having to know much about the hardware and about
the process of hardware/software design, since the nec-
essary information is embedded in the MAT2DSP pro-
gram and its database. This will allow the algorithm
developer to be aware of the cost/performance trade-
offs of different solutions and come up with the best
practical solution which fits the system constraints.

References

[1] A. V. Aho, R. Sethi and J. D. Ullman, Compil-
ers, Principles, Techniques and Tools, Addison-
Wesley, 1988.

2844

