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ABSTRACT

The traditional approach in seismic imaging assumes ho-
mogeneous layers with constant seismic velocities. In real
earth, layers have numerous small-scale variations of prop-
erties (e.g., the seismic P-wave velocity) which are so ir-
regularly distributed that they can no longer be described
by deterministic models; statistical approaches have to be
used instead. They can be described only by their stochastic
properties. In this paper, every distinctive layer is described
by its mean velocity, its variance, and a spatial autocorre-
lation function. This velocity model is transformed into a
model for the autocorrelation of the corresponding impulse
response. The parameters for this model are then estimated
by the minimum least square method using stacked and mi-
grated seismic sections as input. The method is applied to
a real seismic data set. Additional borehole data is used to
estimate one of the parameters independently and thus to
test the approach.

1. INTRODUCTION

The reflection seismic experiment normally yields only the
location of sharp changes of the velocity and density pa-
rameter. These changes are associated with structures and
lithologies in the earth. However, few media afe really ho-
mogeneous. Most have numerous small scale variations of
the material properties. These inhomogeneities are so irreg-
ularly distributed that they can no longer be described by
deterministic models. In addition, the size of structural or
lithological units can be below the limit of resolution. Good
examples are alluvial deposits in fluvial or deltaic regimes.
Often it is not possible to resolve individual river channels,
cross- or foreset beds, however it is possible to measure the
average response of an ensemble of these features. Assum-
ing a particular statistical model for the velocity or density,
one can estimate the model parameters from a dataset. In
this application, we use stochastic model parameters for
the average dimensions and orientation of inhomogeneities.
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Estimating these parameters yields additional information
about the underground. In the approach presented here, ev-
ery distinctive unit is divided into a deterministic part and
a stochastic field, described by its amplitude and second
order statistics (autocorrelation function). The stochastic
component of the medium parameter can be transformed
into a model for the autocorrelation of a wavefield prop-
agating through the medium. Thus we can estimate the
stochastic parameters from a measured wavefield. To sim-
plify the technique, the wavefield is replaced by stacked and
migrated reflection seismic data. The procedure is tested
with a real seismic data set. Additional borehole data can
be used to estimate one of the parameters independently
and thus to control the approach. ’

2. VELOCITY AS A RANDOM FIELD

The data we have are completely processed seismic sections.
The model we are looking for is the velocity model, and
we must connect the data (wavefield) to the model (veloc-
ity). Dealing with random fields, we want to know only
the statistics of the velocity model. But we cannot connect
a deterministic model to the statistical model parameters.
Therefore, we have to work with the statistics of the wave-
field. This allows us to estimate the model parameters. The
new task is to connect the statistics of the velocity model to
the statistics of the wavefield. In the deterministic case we
would do this with the Green’s function (impulse response).
We can still use a similar idea: we try to derive the statistics
of the impulse response. First, we transform the statistical
description of the velocity model into a description of the
reflection coefficients. Then we convert the statistics of the
reflection coefficients into a description of the impulse re-
sponse. Finally, we account for the data processing applied
to the data. These three steps allow us to derive a statis-
tical description of the wavefield we expect from a velocity
model of which we only know the statistics.

The velocity model v(z) for some region of interest can
then be decomposed into a deterministic part %(z) and a
stochastic part dv(z):

viz) = 9(z)+dv(z) (1)
bu(z) = wv(z)—5(z) =v(z) —po (2)
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The deterministic term %(z) describes large-scale velocity
changes. In this paper it is associated with units such as
lithology or structure. Within one unit it is constant and
can be described by the mean velocity u. of the particular
unit. This term is also called the background velocity. The
wavefield corresponding to the deterministic part is of little
interest in this study. It can be modeled with traditional
techniques. The stochastic part Jv(z) is the difference be-
tween the actual velocity v(z) and the deterministic part
7(z). In fact, the deterministic and stochastic parts are not
independent of each other. They are correlated by the de-
composition into different units by size and geometry as well
as the number of units and their associated length scales.

For the forward modeling we need stochastic models.
The first order statistics of the stochastic velocity field is
described by its probability density function pdf. Its first
moment is the average u., and the second moment the vari-
ance o, of the velocity field v.
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E[z] and Var[z] denote the expectation operator and the
variance operator of z, respectively. Due to the decomposi-
tion (2), the stochastic velocity field v(z) has a zero mean
and thus us, = 0. For the sake of simplicity, we choose a
Gaussian pdfwith the mean u, (= 0) and the variance o2.
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We also need the second order statistics which relate the

values at different locations to each other. This is described
by the autocorrelation function acf.
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Rov(2;32,) = Elv(z,)v" (z,)] (6)

We assume the earth to be locally stationary, and the statis-
tical properties independent of their locations. The acfof a
stationary field depends only on the spatial difference { =|
2, — 2, | of location. This allows the définition of acfas a
convolutional product in a different way.

Rou(§) =E[({ v (Ql=v()*v" (=)  (7)
For simplicity we choose the acfto be Gaussian as well.
Ruo (E) = 3_62 (8)

This yields isotropic velocity models of inhomogeneities. To
allow for more general models, two correlation length pa-
rameters, a; and a2, and an angular dependence ¢ are used.

¢ = \/(zcos¢+zsin¢)2 N (ZC°5¢—zsin¢)2
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With this definition for £, the acfdefines a two-dimensional
elliptical function whose semi-major-axis is aligned in the ¢
direction with length a;. The length of the semi-minor-axis

1s az. For ai; = a3, the inhomogeneities are isotropic and
the parameter ¢ is not defined.

For a constant density p, the reflection amplitudes yield
the discontinuities in the velocity distribution. We can
transform the acffor the velocities to a corresponding acffor
the discontinuities. For normal incidence, we linearize the
relation between the discontinuities and the velocities as
follows:

&= (10)

Mathematically, we applied a linear filter h(z) = ﬁ(—l, 1)
to the velocity field. Due to linearity, the resulting field é;
is again a random field é(z) with the acfRaze(£).
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The real seismic reflection data contain primary reflections
as well as multiples and internal reflections. It is not just a
reflection coefficient series, but the impulse response of the
velocity field. To go from the reflection coefficients to the
impulse response we need a transformation. In addition, we
need an expression for the acfof this impulse response. To
calculate the impulse response, we would need deterministic
reflection coefficients, which we do not know. The only
knowledge we have is the acfof these coefficients, which
can be derived from our stochastic velocity model. As a first
order approximation, we can replace the acfof the impulse
response by the acfof the reflection series; the stochastic
residual field dv(z) varies smoothly. This means that the
corresponding reflection coefficients are small. In this case
the z-transform of the impulse response of a stack of layers
can be written as [1]:

- éo+512+6222+...
- 12
#(2) T+ Ree(1) z + Ree(2) 22 + ... (12)

If products of the third and higher order in the acfRs:
of the layered stack are neglected, it is easy to show that
R+ = Rzz. The main contribution of the acfof the impulse
response equals the acffound from backscattering using the
Born approximation or Rayleigh scattering [2).

It is not possible to take care of the influence of the data
processing on the acf. An inherent assumption is, there-
fore, that a stacked and migrated section approximates a
wavefield where source and receiver were at the same posi-
tion and the wavefield propagated only in the vertical di-
rection. The source wavelet is another problem. Most of
the time the wavelet is unknown. If it were known, then
it could either be removed from the data by a deconvolu-
tion or included in the model by convolving the acfof the
wavelet with the acfof Rss.

3. PARAMETER ESTIMATION

At this point we have a model for the acfof a wavefield be-
ing scattered back from a random media. A Gauss-Newton
approach is applied to estimate the model parameters é,,
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az, and q?> which fit the acfof the data best in the MMSE
sense. The equation that has to be solved is

Ra;(&l,&zﬂz’,éi) "ﬁdd(_{‘.) =¢; (13)

under the constraint that 3 e? be minimal. The index i is
used to denote all points in the data or the acfthereof. Let
(= (¢1,¢2,¢3)T denote (&1,42,¢)T. Then the system can

be linearized using ¢ = g(o) +4¢.
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The resulting linear system of equations can be minimized
very easily using QR decomposition. Due to the nonlinear-
ity, we have to iterate until CJ(") = J("_l) + 8({;) converges
into a stable minimum. Unfortunately, the model space is
rather large. There are many local minima where the esti-
mation could be trapped. If the initial parameters were not
close to the correct values, then wrong parameters would be
estimated. Therefore, the Monte Carlo technique is used.
The model space is searched randomly to find the best ini-
tial parameters. These are then used as initial values for
the Gauss-Newton method.

It must be mentioned that the acfRq4q of the data is un-
known. The acfof the data is only an estimate based on a
small rectangular window size L x L of real data. The choice
of the acfestimator has some importance for this param-
eter estimation to work. Should the data wrap around in
the acfestimation? How much padding should be chosen?
Should a tapering be applied to correct for the decreasing
number of overlapping datapoints? Generally, the larger
the window the better. But there is also a trade-off for
large windows. In reality the stochastic velocity component
may not be stationary. On the contrary, a unit for which
the random parameters have to be estimated has only a fi-
nite thickness, which limits the amount of data available.
Also, the discretization introduces problems with aliasing
and wraparounds. Fortunately, they can be neglected if the
scale parameter is a < %

4. APPLICATION.TO REAL DATA

The field dataset is a three-dimensional survey with 37 * 39
cdp points with a spacing of 4m (obtained from Chevron
Oil Company). Fortunately, there are different wells in the
area which allow us to control the vertical parameter as es-
timated by the new technique. Figure 1 shows the P-wave
sonic log, a median filtered P-wave sonic log and the natu-
ral gamma log for well CH4, as well as a simple geological
interpretation of the area. The seismic dataset is used in
two different ways. First, one stack of a seismic row in the
middle is used to estimate the parameters as a function of
depth. These results are then compared to the velocities
from the nearby well. For this purpose the P-wave sonic
log is resampled to have the same vertical resolution as the
seismic section. The comparison is presented in Table 1.
The vertical parameter estimated from the seismic shows a
good agreement with the well-log.

In a second experiment, we produced a map of random
media parameters using all rows and columns of the seismic

Seismics Log

Depth [m] | &1 [m] l dz [m] I é [°] I S e || az [m]
79 64.7 4.9 -2.1 7.9 -
115 51.5 4.6 -2.2 | 10.2 -
151 46.6 4.7 -3.2 7.4 5.4
187 49.7 4.8 -3.4 5.9 4.0
223 74.4 5.5 -4.2 8.3 1.4
259 82.5 6.3 -5.2 9.0 6.1
295 85.8 6.0 -5.9 | 12.8 4.7
331 65.5 5.7 -5.7 10.2 -
367 49.5 5.4 -6.2 | 10.0 -
403 42.9 6.1 -7.8 7.5 -
439 62.0 6.7 -10.8 | 10.4 -

Table 1: A comparison between the parameter estimated
from the brute stack and from a well-log. The well-log data
is resampled to have the same resolution as the seismic.

dataset. For each row and column of the dataset, all three
parameters &1, a2, and ¢ plus the model misfit are calcu-
lated for a depth of 150 meters. The results are presented
in Figures 2 and 3. In both column and row direction the
horizontal parameter @; is large, while the vertical a; is
rather small. The parameters change dramatically toward
the end of the rows and columns. Also, the absolute error
of the estimation decreases toward the edges. There are
two possible explanations: (1) the processing applied was
unable to take care of boundary effects such as the energy
reflected from outside the area of the survey; and (2) there
are fewer data points close to the edge, making it easier to
fit our model. Finally, we created possible realizations of
the velocity field using the parameters we estimated before
(Figure 4). Due to the variability of the estimated param-
eters the random media parameters a;, G2 and qS are aver-
ages of the different rows or column estimates which yield:
a, = 150m, a. = 140m, &, = 2.5m and a dip ¢ = —7°.

5. SUMMARY

‘We showed that it is possible to use surface seismics to es-
timate parameters for a simple random media model in two
dimensions. The model has three parameters: two length-
scales a1, @2 and an orientation zf) The method was applied
to a real 3-D seismic dataset and the stochastic parameters
were estimated as a function of position.
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Figure 1: P-wave sonic log, median filtered P-wave sonic log
and the gamma log of the well CH4. Also shown are some
prominent features and a simple geological interpretation.
The region between 130 and 180 m depth is the region used
for the stochastic parameter estimation.
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Figure 2: The random media parameter as estimated from
the real data. Shown are the three parameters and the
absolute error for each row of the dataset at a depth of

150 meters. The absolute error is the total error of the
estimated parameters using the L2 norm.
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Figure 3: The random media parameter as estimated from
the real data. Shown are the three parameters and the
absolute error for each row of the dataset at a depth of
150 meters. The absolute error is the total error of the
estimated parameters using the L2 norm.

Figure 4: Two possible realizations of the velocity field as
estimated from the real data. Shown are the velocity fields
from a depth of 122m to 182m. The parameters used are:
G, = 150m, éc = 140m, &, = 2.5m and a dip ¢ = ~7°.
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