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ABSTRACT

We present a survey of theory and practice in tomo-
graphic imaging of subsurface features utilizing ground
penetrating radar (GPR). The discussion will include:
i.) A brief review of the equations governing radar scat-
tering culminating in the Lippmann Schwinger (LS)
equation. 4i.) A summary of approximations often
made in developing GPR imaging algorithms based on
inversion of the LS equation: the scalar wave approxi-
mation, the two dimensional scattering model, and ne-
glect of multiple scattering. #4i.) A description of cer-
tain inversion algorithms used in GPR work. This will
include a short discussion of ill-posed problems utilizing
a one dimensional model equation, a review of difficul-
ties characteristic of tomographic inversion, a summary
of results based on linearized inversion methods such
as Devaney’s generalized projection slice theorem, and
finally, a brief overview of the some numerical algo-
rithms. #v.) A discussion of a recent field study using
GPR to image shallow targets.

1. FUNDAMENTAL EQUATIONS
The electromagnetic field vectors
& = E(z) exp(—iwt), and H = H(z)exp(—iwt),

in an inhomogeneous medium with conductivity o, per-
mittivity € and permeability u (each of which may, in
general, depend on x and w) satisfy Maxwell’s equa-
tions

VXE—-iwulH = 0 (1)
VxH+iwle+ioc/w)E = 0 (2)

We will be concerned with problems in which the pa-
rameters €, o, y depend on position in the interior of
a bounded domain D, the scattering region, and have
constant values €o, 0o, o in the exterior, R®\ D, of
D. (For geophysical problems, it is more realistic to
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take the ground-air interface as x5, = 0, let Ri = {z:
+x, > 0}, assume D € R? and that for z € R} \ D,
€ = €p+, etc.. To simplify our presentation of the ba-
sic formulas, we will omit this additional complication,
but will account for it in later discussions.) Far from
the region D we impose the Sommerfeld condition of
outgoing radiation. We assume that the scattering re-
gion is probed with a known (incident) wave E!, H*
which satisfies Maxwell’s equations in the background
medium and is outgoing as || — co. We write the total
fields as a superposition, £ = E* + E*, H = H* + H*,
of incident plus scattered fields. It follows from Eqgs.(1)
and (2) that E satisfies

UV x u 'VxE—-K*E=0 (3)

where k? = w?u(e + io/w). For the remainder of this
paper we will assume that the magnetic permeability of
D is the same as that of the background, u(z,w) = uo
(or it = po+). With this approximation, which seems
to be reasonable for most geophysical problems, Eq.(3)
becomes (V x V x —k%I )E = 0, and the incident field
E* satisfies this equation with k = ko. Thus, the scat-
tered field, F*, is the solution of

LoE* — (k* —k3E =0 @)

where £y = V x V x —kZI. The dyadic Green’s function
for the operator Lo appearing in Eq.(4) is well known
so we can write this equation in the form of an integral
equation

E=E+Ly' (K§(n—1)E), (5)

where n(z,w) = k%/kZ is the complex index of refrac-
tion. This is the LS integral equation which, in the
direct problem determines the field F which results
from the irradiation of the scattering region D by the
given incident field E*. For our discussion of the in-
verse problem, it is convenient not only to view E* as a
given vector field, but also to assume that E* can (the-
oretically, at least) be measured over a surface S which
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surrounds or partially surrounds the scattering region
D, and to consider Eq.(5) as a relation from which we
can attempt to determine the complex refractive index,
n(z,w), of the scattering region. A rigorous presenta-
tion of the mathematics of inverse scattering including
questions of uniqueness can be found in Colton and
Kress[1], while physical and some computational as-
pects are dealt with in Chew[2].

2. APPROXIMATIONS

For the majority of GPR remote sensing applications
in geophysics, the surface S over which the scattered
field can be measured is a plane parallel to, or coin-
cident with the ground-air interface. We shall assume
this to be the case in the current presentation and take
S = {z : 23 = b} (or a portion thereof), b > 0. We
suppose that D lies in the region R® = {z : z, < 0},
and that the Green’s dyadic is constructed so that the
appropriate conditions (continuity of normal H and
tangential £') on x5 = 0 are satisfied. (In other applica-
tions of inverse scattering methods, e.g. medical ultra-
sound tomography, the surface over which the scattered
field is measured may completely enclose the domain 1D
and so that additional data is available for the inversion
process.) We observe first of all that the relation be-
tween n and E is a nonlinear one. This can be seen in a
formal way by iterating Eq. (5) to produce the so—called
Born series E = E* + CJIOEi + £510£510E" +...,
where O = kj(n—1). Each term in this series can be as-
sociated with increasingly complex multiple scatterings
within the domain D. The integral equation obtained
by truncating this series at the linear term is called
the Born approximation. Of course, a solution of this
equation neglects all multiple scattering terms and so is
most accurate in the weak scattering limit. We obtain

E' =k L5 (n—-1)E = /D Go(-,y)Q(y)Ei(y) dy (6)

where Gy is the dyadic Green’s function. It will be
noted that this integral equation, although linear, is of
the first kind so some care must be taken in its inversion
as we will discuss in the next section.

Another source of complexity is the vector nature
of the basic integral equation, Eq. (5). In many prob-
lems of practical importance, it may be assumed that
the variation of the properties of the scattering region
D in one direction—which we may arbitrarily choose
to be the 3 direction—is negligible. In this case, the
problem becomes two dimensional in the sense that all
fields depend on z;, x; only, and, as is well known, the
vector nature of the radiation no longer needs to be con-
sidered. If we presume that the antenna launching the

incident wave is oriented such that the electric field is
in the z3 (transverse) direction (E = (0,0, F3(zy, z))),
then it is clear by symmetry that the scattered field
will also lie in this direction. In this case, E53 = u is
determined as the solution of (recall y is constant)

g2 o2
—+ — K2u=0
<3x%+6mg)u+ u

where k = w?u(e + io/w) is as defined above. The
boundary conditions reduce to continuity of u and its
normal derivative du/0dz> on the interface, and outgo-
ing radiation at infinity. The LS equations simplifies
accordingly and if it is assumed that the scattered field
is measured on the interface, the integral equation

u(zy,0) = /D Gol(@1, &1,£2)0(€1, E2)uley, £2) dérdé

where Gy is now the Green’s function for the scalar
Helmholtz equation. Of course, for weak scattering this
equation may be linearized as in the vector case.

3. INVERSION ALGORITHMS

As we have remarked above, the LS equation represents
a nonlinear relation between the scattered field and the
refractive index of the medium. Direct inversion of this
equation clearly must involve numerical computation.
We will only deal briefly with the full problem, and then
concentrate on methods which apply in the linearized
or weak scattering limit.

Suppose that the electric field is measured at points
{p; };Vzll on the plane surface S, and that several values

of incident field, { £} ;1?21 are used, then we know that
E(z;E}) = E(=z, k) must satisfy Eq. (5) in R® and

E*(pj; By) = (L5 'OE( k))(p;), p; € S

on the measurement surface. Perhaps the most di-
rect approach to the solution of this pair of equations
is via optimization techniques. A trial function pair
E(z,k), O(z,k) is sought which minimizes the error

€ =3k NE(ps, k) — E*(pj; BL)I200s +
|E* — (£5 O k)E(-, k))||%,,

where || ||surf and || ||vel are suitable norms introduced
in the space of trial functions. For example, the prob-
lem is discreetized by introducing a finite set of node
points in D 2 D and S, expanding £, O in terms a
system of finite element basis functions based on these
nodes, and using L? norms in the definition of the error,
then after integration ¢ will become an ordinary func-
tion of the nodal values (and of the other parameters
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in the problem) and standard optimization procedures
can be applied to it.

In the case of a homogeneous background medium,
the solution of the linearized Born approximation in-
tegral equation may be found using generalized pro-
jection slice theorem (GPST) due to Devaney[3]. The
inversion, in this case, is accomplished most easily for
the source and receiver in the far field of region D so
that the incident wave and the Green’s function can
both be simplified. The formulas which result relate
the low pass filtered Fourier transform of the object
function O to the measured scattered field. In the two—
dimensional (2D), far field GPST case, Ef = u®(zy, z3)
we obtain

ieiko(r/+-p++1/’-p') .

us(w+7$—) = 87rk0d+d_ O(ko(v+ +V—))7

where zp is the centroid of D, z* = (I*,0) are the
receiver and source locations respectively, d* = |z —
zp|, v¥ = (¢* — zp)/d* are unit vectors, and O(k) =
J exp(~ik - )O(z) dz is the two dimensional Fourier
transform of the object function. Since we can only
locate the transmitter and receiver on the surface S
(line in 2D), then for fixed z~, say, the object func-
tion is determined by the above formula only for wave
vectors K = (kg, k,) which lie on a semi-circle of ra-
dius ko with center at (kov, , kov, ). Since V;t > 0in
this geometry, these semi-circles do not sweep out all
of wave number space, but only a portion of the region
{rk : Ky > 0,|k| < 2ko}. Thus, regardless of the value
of kg, a unique determination of the object profile is
not possible—only a filtered image can be obtained.
Similar but more complex formulas can obtained us-
ing only the assumption that the depth of D is much
greater than a wave length[4, 5]. For example, in the
2D situation described above with the transmitting and
receiving antennas coincident monopoles, we obtain[4]

e iexp(in/4) A.< = ,,)
u*(ky) = O ki, \Jakg — ki) (7
*) = v YAk —k o\ nvieT )

where 4* is the 1D Fourier transform of the scattered
field measured along the horizontal line z; = 0. This
result suffers from the same limitation on wave number
space coverage that applies to the far field case. For
purposes of later discussion we call the two results just
presented the far field (FF) and Fourier transform (FT)
approximations.

To my knowledge, the complete linearized problem
including vector waves and refraction at the ground-air
interface has yet to be solved (and would most cer-
tainly involve extensive numerical work). Omne major
difficulty in inversion of the linearized problem stems
from the fact that the relevant integral equation is of

the first kind and has a very smooth kernel. This type
of equation is severely ill-posed so that small errors in
the measured data will cause large distortion of the
predicted object function. Since such errors are bound
to occur in a field application, some way of regulariza-
tion must be used in the inversion process. For exam-
ple, the optimization mentioned in the discussion of the
numerical formulation of the nonlinear problem when
applied in the linear case will clearly lead to a system
of linear algebraic equations, and it will be found that
the coefficient matrix of this system is ill-conditioned.
Thus, some method such as singular value decomposi-
tion must be used in order to obtain the solution. As
is well known, there are a number of possible ways to
regularize in addition to singular value decomposition,
and I will discuss very briefly the popular Tikhonov
procedure[6] as applied to a prototype integral equa-
tion of the first kind which arose in connection with
another tomographic problem(7].

The example that we will present is essentially that
of a finite Laplace tranform which for convenience we
assume applied to functions defined on the interval
[0,1]. Thus, we consider the integral equation of the
first kind g(z) = fol exp(—xy)f(y) dy, or g = L f, where
g:[0,1] — R! is a given element of L = L?(0,1), and
we assume that the solution is sought in the (Sobolev)
space H = H}(0,1) of functions such that f, f' €
L2(0,1) and f(0) = f(1) = 0. Observe that the kernel
of this equation is a very smooth, in fact, analytic func-
tion. Thus, we expect that inversion of £Lf = g may be
an ill-posed problem. Multiplying by the adjoint of £,
see that any solution of the original problem satisfies
L*Lf = L*g so that for small a the solution of the
regularized equation

af +LxLf=Lxg

should approximate the actual solution. The weak form
of this equation may be solve by Galerkin’s method,
i.e., we seek f such that

alf, Ry + (L*Lf h)y = (L g, k)

for all functions A € H. This equation may now be
solved using standard finite element techniques. Effi-
cient procedures exist for optimal selection of the reg-
ularization parameter[8].

4. FIELD STUDIES

We will now review two recent field studies[5] using
GPR imaging. Both studies were done at sites located
near the Oak Ridge National Laboratory: the pipeline
and crypt sites. As the name implies, the pipeline site
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is a natural gas pipeline right of way, and the objective
at this location was to image the buried pipe which
represents an excellent approximation to a 2D object.
Data was taken at 119 positions separated by 30 cm
intervals along a line on the ground surface running
perpendicular to the known direction of the pipe. The
crypt site is a cemetery located within the Laboratory
reservation and containing marked graves. Data was
acquired at this site along a line on the ground surface
and crossing two grave sites in a direction normal to
the assumed orientation of the coffins. Measurements
were made at 85 locations on the line separated by a
distance of 15 cm. The geometry here was of course
not strictly 2D, but the same imaging algorithms were
employed as at the pipeline site. The soil at the sites
had properties typical of moist clay, n = n, + na,
with: n; = 25, ny &~ 10~%. The same equipment was
used in each study: a Sensors & Software Inc. pulse
EKKO 1V radar system with two 100 MHz nominal
center frequency dipole antennas for sending and re-
ceiving. (The antenna calibration was done in air. At
the sites, the center frequency was found to be approxi-
mately 60 MHz due probably to the conductivity of the
soil.) The scattering data gathered by the instrument
was treated using the 2D versions of the FF and FT
approximations, and the log likelihood method. T will
only discuss the results of the FT approach.

Equation (7) was used as the basis for processing
the data obtained from both sites. As mentioned above,
the FT inversion process is non unique. When em-
ployed at wave number ko using (2D) data, it filters out
wave numbers above 2kp from the image, and due to
the restriction that the transmitter and receiver must
both be located above or on the ground-air interface it
does not cover the entire portion of the 2k, radius disk.
In addition to this basic filtering limitation, the follow-
ing approximations are incorporated in Eq. (7): (i) 3D
effects are neglected. These were not thought to be too
important at either site, (i) the transmitter and re-
ceiver are both assumed to lie in the same homogeneous
medium as the scattering volume, i.e., ground-air in-
terface effects are neglected. The received data clearly
indicate the presence of large scale horizontal features,
and these had to be filtered out prior to processing,
(447) the transmitting and receiving antennas are mod-
eled as monopoles whereas the actual instrument used
dipoles. The apparent effects of this neglect were again
evidenced in the basic data as deviations between ex-
pected and actual signal amplitude behavior. Again,
filtering of the data was used to reduce these effects.

Both items (i) and (iii) above can always be at
least partially accounted for by more realistic model-
ing of the source, receiver, and geometry of the actual

experimental situation. On the other hand, some fil-
tering of the data will always be necessary in order to
smooth out unavoidable errors which arise from inad-
equate specification of the actual instrument configu-
ration. In spite of the approximations inherent in our
treatment of the data, the processing of the images ob-
tained at both sites resulted in a clear indication of the
location of the buried objects!. On the other hand, the
images obtained lacked detail. Whether improved de-
tail can be obtained by more careful modeling needs to
be further investigated. The limitation on wave num-
ber space coverage which is imposed by the assumed
GPR geometry acts as a bound on the amount of de-
tail which can reasonably be expected. It is necessary,
therefore, to acheive a reasonable compromise between
the modeling effort required to achieve greater object
resolution and the bounds on resolution imposed by the
geometry.
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1At the time of writing, figures illustrating the imaged objects
are not available. These will be presented at the conference
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