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ABSTRACT

We review the characteristics of hyperspectral imaging
sensors and describe several important data exploita-
tion applications in remote sensing. We then focus
on a particular signal processing application, material
identification, and propose a novel algorithm based on
multiresolution wavelet techniques. Finally, we demon-
strate the multiresolution material identification algo-
rithm on data collected with a 211-band hyperspectral
sensor.

+

1. BACKGROUND

Hyperspectral imaging sensors collect multiband im-
agery spanning the visible and infrared portions of the
electromagnetic spectrum. Hyperspectral sensors are
typically designed to collect simultaneous image bands
over contiguous spectral bands, each band having a
narrow relative fractional bandwidth that is commonly
less than 1%. The result is that a hyperspectral imag-
ing sensor can record a fine spectral resolution electro-
magnetic profile of each pixel in the field of view. These
profiles can then be used to infer properties of materials
within each pixel in a scene. More specifically, charac-
teristic wavelength-dependent changes in the emissivity
and reflectivity of a given material can be related to the
chemical composition and types of atomic and molecu-
lar bonds present in that material [3]. Applications of
hyperspectral imaging sensors include earth science ap-
plications such as environmental monitoring, geodesy,
bathymetry, hydrography, soil analysis, and land use
surveys, as well as defense applications such as surveil-
lance and treaty verification.

Multispectral features in the reflectivity and emis-
sivity of a material are largely due to changes in the
material’s complex index of refraction as a function
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of wavelength. The most prominent features occur
at resonant frequencies where the material undergoes
electronic and/or vibratory energy transitions at the
atomic and/or molecular levels. At infrared wavelengths
for instance, these spectral features are largely due to
the different types of molecular bonds present in the
material. Thus, differences between the spectral pro-
files of man-made objects and various natural back-
grounds can largely be attributed to differences in their
chemical composition [2, 3, 5].

Figure 1 shows the hemispheric reflectance spectra
of two materials, green paint and grass. One can see
significant differences between the spectra in several
regimes, a difference in the waveform rise around 0.7
pum, as well as the effect of water vapor absorption in
the grass at 1.4 and 1.9 pym. Multispectral and hy-
perspectral sensors allow exploitation of these material
differences through the simultaneous collection of sev-
eral spectral bands.

2. MODEL

The material identification problem is that of classi-
fying each pixel in a scene according to its material
content. Two difficulties that limit the performance
of classical classification algorithms are the appearance
of multiple material types within a pixel, the so-called
“mixed pixel” problem, and the large dimensionality
of the hyperspectral signatures. The mixed pixel prob-
lem leads to a composite hypothesis testing problem,
while the signature dimensionality problem can lead
to algorithm robustness problems. As an example,
the AVIRIS sensor simultaneously collects 224 spectral
bands, each with a 10nm bandwidth distributed over
the 0.4 to 2.4um range [3, 4].

In the hyperspectral remote sensing literature, the
material identification problem is commonly referred to
as “spectral tagging.” Two components of spectral tag-
ging are “endmember selection,” determining the con-
stituent components of a mixed pixel, and “abundance
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selection,” estimating the relative fraction of each con-
stituent within a pixel {1, 2, 5].

Let D;j.x denote the measurement at pixel (z,7) of
the kth spectral band. We assume that the measure-
ment D;;x can be related to the reflectivity Rijx of
the scene according to the following model:

Dijx = gijik Rijix + 0ijik- (1)

Factors gi;.x and o;j;x contain factors which must be
corrected for through sensor calibration and data nor-
malization to remove environmental effects. In par-
ticular, g;;jx contains scale factors due to non-uniform
sensor gain, atmospheric attenuation (i.e., absorption
due to moisture vapor) and non-uniform illumination
effects (i.e., sun angle effects). The bias or offset term
0ij;x accounts for effects such as sensor bias and non-
uniform background radiance. We assume that calibra-
tion and data normalization has been performed and
work directly with the reflectance values Rijx. Refer-
ence [4] contains a description of calibration procedures
for the AVIRIS sensor; reference [6] contains informa-
tion on data normalization techniques.

Let R;; = [Rijy,. .-, Rij;L] denote the vector of
spectral reflectance measurements at a given pixel (4, §).
It is common to assume that each measured reflectance
is a convex mixture of several distinct spectral signa-
tures. In particular, we assume that each R;; can be
decomposed as the mixture of K reference spectra:

K
R = Zaij;kﬁk = af;S. (2
k=1
Here,
ik =1,
3
for each if, a;; = [aija, - .-, @ij;k]T,and S =[Sy, ..., Sk]-

Two problems that arise in hyperspectral data anal-
ysis are the selection of reference spectra, S;,...S5k,
typically referred to as endmember selection; and esti-
mation of g;;, or abundance estimation [2, 5]. Some-
times the reference spectra are taken from databases
of spectral measurements of specific materials such as
minerals, soil, paint and vegetation [2]. Other times
the reference spectra, or endmembers, are extracted
directly from the imagery using principal component-
type analysis [1, 5].

In these latter analyses, the reference spectra are
typically treated as non-random vectors, and a least-
squares approach is used to estimate ¢;; as the pro-
jection of the measured reflectance data R;; onto the
matrix S of reference spectra. On the other hand, it
might be more appropriate to model the reflectance R,;

as a convex combination of random spectra, to more
accurately model measurement variations due to scene
variability.

We shall assume that the spectra S, k=1,..., K
are Gaussian random vectors each with a known mean
vector, p, and known covariance matrix X [in which
case we write S, ~ N (g, , Ei)]. The measurements R;
in (2) then become convex combinations of Gaussian
random vectors. The material identification problem
then becomes that of estimating the mixture propor-
tions o;; for each pixel (i,7) given a set of reference
models {(g,,Zk),k=1,...,K}.

In the remainder of the paper, we discuss the prob-
lem of optimal band selection, or dimension reduction.
Specifically, we address the problem of representing
the model (2) by a smaller-dimensional spectral sig-
nature, either by combining adjacent spectral bands,
or by deleting bands not required for the particular
discrimination task. There are several applications of
band selection including dimensionality reduction for
data regularization (i.e., to deal with the effects of small
data sample size), adaptive band selection for tunable
sensors, and data compression. Moreover, the band se-
lection approach we propose may provide an useful al-
ternative to previously proposed principal-component
type representations [1, 5].

3. OPTIMAL BAND SELECTION

We consider the problem of optimal band selection in
hyperspectral data, or dimension reduction. Specifi-
cally, suppose that one knows a priori which materials
are to be discriminated between in a given AVIRIS im-
age. Which of the 224 spectral bands, or what linear
combinations of those 224 bands are required for the
discrimination task? What are the minimal number
of bands required to achieve a specified discrimination
performance? We propose a band selection scheme that
uses a min-max selection criterion to reduce the full hy-
perspectral data set to a small number of linear band
combinations that is sufficient to achieve a prespecified
discrimination performance. Specifically, we decom-
pose the reference spectra using use a wavelet trans-
form and select the fewest wavelet coefficients required
to perform a given discrimination task. These wavelet
coefficients then yield a reduced-dimension basis set
that can be used to represent the measured reflectance
spectra R;; in the material identification problem.

Let Wi(am,Mn),m,n=1,2,..., denote coefficients
the discrete wavelet transform of spectral reflectance
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vector S, along the spectral dimension:

L
Wk(amy’\n) =Zsk(l) _];/2"1}("‘_/\") » (3)
=1 am

am

where S, = [Sk(1),...,Sk(L)]T and ¢ is analyzing
wavelet wavelet kernel. The wavelet transform decom-
poses the hyperspectral signature into a set of compos-
ite bands which are linear, weighted combinations of
the original spectral bands. These linear combinations
can be of a very fine scale (single band) to very coarse
scales (combinations of many bands). Here, A, rep-
resents the center frequency of a the band associated
with Wg(am, An) and @, represents its bandwidth.

The assumption that each of the reference spec-
tra S, is a Gaussian random vector implies that each
of the wavelet coefficients is a Gaussian random vari-
able. Let W, be the vector of wavelet coefficients cor-
responding to spectrum Sk and let W} denote a sub-
set of these coefficients. We use the shorthand nota-
tion px(W}) to denote the probability density func-
tion of W). By assumption, W), is Gaussian. We use
maximum-likelihood techniques to estimate the mean
vector and covariance of px (W)

The distance between 'two distribution functions,
say p; and p; is determined via the Kullback-Liebler
(cross-entropy) measure as

D(pi, ;) = / pi() log Z,% 4 @)

In our case, we select wavelet coefficients (i.e. compos-
ite bands) to maximize the worst case distance between
any pair of materials in the library. Using this distance,
we guarantee that the maximum probability of error for
the library is minimized.

The band selection is a sequential process. After
the wavelet decomposition, an initial pairwise search
(W is 2D) is made to find the best two bands (wavelet
coefficients) which maximizes the minimum cross en-
tropy between the materials. Then given those selected
bands, the search continues to find the third best (W is
3D), etc. A perturbation method is then used to deter-
mine that the previously selected bands are still ”the
best.” This operation continues until either: a) a spe-
cific discrimination goal is attained (large enough cross
entropy); or b) the maximum number of bands allowed
have been selected. This analysis would be done off-line
on a reference library of materials. A specific subset of
wavelet coefficients would be created for each material
library constructed. The coefficient subset would then
define a transformation, T', on the input hyperspectral
data ¥ = T# which reduces its dimensionality. The
unknown input data would then be transformed by T’

producing the new observation vector § which could
then be in the endmember selection and abundance es-
timation problems discussed above.

4. EXAMPLE

We implemented the min-max band selection scheme
described above to select band combinations that were
optimal for discriminating between paint and vegeta-
tion. Data used for this example were taken from the
ERIM reflectance data base. This data base spans
4-2.5um with a resolution of .0lum. 211 bands are
present. Two reflectance profiles is shown in Figure
1, olive-drab paint and dry grass. Distinct differences
between the two signatures are manifested in two ab-
sorption dips at 1.4 and 1.9 pm in the grass signa-
ture due to water absorption, and a difference in sig-
nature rise at wavelengths around 0.7 ygm. The bot-
tom of figure 1 shows the best four bands selected by
the algorithm. These four bands correspond directly to
bands that would have been selected using heuristic ar-
guments based on reflectance phenomenology. Figure
2 shows a scatter plot of olive drab paint and vege-
tation signatures over the two best bands selected by
the wavelet algorithm. Note the distinct separation be-
tween the two populations which will lead to accurate
classification performance.

5. SUMMARY

Hyperspectral imaging sensors record fine-resolution elec-
tromagnetic profiles of each pixel in the field of view.
These profiles can be used to infer properties of ma-
terials within each pixel in a scene. We presented a
min-max approach for reducing the multichannel hy-
perspectral imagery to a smaller-dimension collection
of linear band combinations that are optimal for mate-
rial discrimination. Applications of the band selection
algorithm include, optimal data reduction, data com-
pression, and band selection for tunable sensors.
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Figure 1: Top: Reflectance spectra of vegetation and
olive drab paint; Bottom: Selection of best four com-
posite bands for material characterization via min-max
wavelet method.
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Figure 2: Scatter plot of composite band 1 versus com-
posite band 2 for olive drab paint (+) and vegetation
(squares) for two best bands selected by the min-max
wavelet decomposition method.
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