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ABSTRACT

The accurate analysis of complex satellite scenes is a
critical component of many environmental studies. Unfortu- -
nately, satellite data often contain noise of various kinds which
can compromise scientific analysis. Moreover, a satellite scene
generally contains information on many different space scales
associated with a variety of geophysical and/or biogeochemi-
cal processes. Thus, an accurate segmentation of such scenes
is an essential step prior to scientific analysis. Only after such
steps (e.g., noise reduction, segmentation) have been done can
meaningful geophysical analyses be performed. This paper
shows the natural synogestic relationship between the engi-
neering and scientific components of the aforementioned prob-
lems. The benefits obtained by such a combined approach are
illustrated with specific examples (oceanic, atmospheric and
terrestrial) using both polar orbiting and geostationary satellite
data.

1. INTRODUCTION

Data collected by earth observing satellites (e.g.,
NOAA’s Advanced Very High Resolution Radiometer
(AVHRRY); Geostationary Earth Observing Satellites (GOES))
are transmitted to earth in complex, band-interleaved data
structures. Prior to use in quantitative scientific analyses, these
data must be calibrated, geo-referenced, and segmented.
Undetected clouds, for example, are the largest source of error
(e.g., Robinson, 1985) in satellite derived estimates of sea sur-
face temperature (SST) and thus proper segmentation of the
data is an essential step prior to computing SST. Accurate cali-
bration and segmentation, however, often are compromised by
uncorrected sensor noise in the data.

Historically, many of these important steps either
have not been done properly or in some cases, simply have not
been done. This problem is exasperated by the fact that often
scientists are unfamiliar with the relevant signal analysis and
image segmentation techniques used in modern engineering
disciptines. This paper documents through a few selected
examples the benefits to be gained by the earth science com-
munity from incorporating more rigorous noise removal and
segmentation procedures into the processing of remotely
sensed satellite data prior to quantitative scientific analysis.

2. NOISE REMOVAL
2.1. GOES Visible Data

The periodic nature of the stripes in the GOES data
(e.g., Weinreb et al., 1989) suggests that finite impulse
response (FIR) filters might prove successful in destriping the
data. For each of the 81 GOES images analyzed, a mean one-
dimensional power spectrum was computed by ensemble aver-
aging 512 one-dimensional spectra taken down the columns of
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the image. As expected, the 81 ensemble averaged spectra
show that noise in the GOES images associated with the
stripes is narrow-band and isolated at frequencies of 1/8, 2/8,
3/8, and 4/8 cycles per pixel. The largest peak (at the highest
frequency, 4/8 cycles per pixel) corresponds to the noise gen-
erated by the mismatch between every pair of adjacent lines.
The smallest peak (at the lowest frequency, 1/8 cycles per
pixel) corresponds to the slower, more regular eight line repeat
cycle of the full sensor. This information provided the basis for
the design of the target FIR filter used in this study. This filter
can be implemented in three separate ways: 1) a one-dimen-
sional Fourier FIR filtering of each of the N columns in the
image; 2) equivalently as a single two-dimensional Fourier
FIR filtering of the image; or 3) in the spatial domain by con-
volving segments of a given column with the spatial FIR filter
kernel.

A one-dimensional target filter, consisting of narrow,
frequency-targeted, one-dimensional wells placed at Fourier
space coordinates 64, 128, 192 and a low pass filter starting at
240 (for the noise at 256 in the power spectrum) was con-
structed. These wells are constructed using one-dimensional
Gaussian functions centered at the noise peaks in the power
spectrum of the GOES data. For a N row by M column GOES
scene, this one-dimensional Fourier implementation of the tar-
get filter must be applied N times. Moreover, some degree of
signal mismatch can occur at column boundaries in the result-
ant filtered image because of the N independent Fourier calcu-
lations. For efficiency of the FFT calculations, this method
imposes a power of two requirement on the vertical dimension
of the image.

To circumvent some of these difficulties, a single
two-dimensional Fourier implementation of the target filter
can be applied to the GOES scene. This implementation of the
target filter eliminates any potential mismatch at column
boundaries between the N one-dimensional Fourier computa-
tions discussed above. The two-dimensional FFT requires a
power of two in both dimensions of the image for efficiency.

Implementation of a one-dimensional spatial target
FIR filter using the Parks-McClellan algorithm (McClellan et
al., 1973) simultaneously eliminates column boundary mis-
match problems and removes power of 2 constraints on the
dimensionality of the image. This latter feature makes it opera-
tionally more attractive than Fourier based implementations of
the target filter. The Parks-McClellan algorithm uses a Cheby-
shev approximation to construct the desired filter impulse
response. To remove stripes in the GOES imagery, the desired
filter impulse response is specified in terms of a piecewise lin-
ear curve where the response is unity in the pass bands and
zero in the stop bands. Stop bands are located at normalized
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frequencies of 0.25, 0.50, 0.75 and 1.0 (where the normalized
Nyquist frequency is equal to 1). These frequencies corre-
spond to periods of 2, 4, 8/3 and 8 pixels, respectively. With
this specification as input to the Parks-McClellan algorithm,
one can compute a set of coefficients that can be used to filter
GOES data along columns in the spatial domain.

Once filter weights have been determined with the
Parks-McClellan algorithm, only the length of the FIR filter
kemel (i.e., the order of the filter) to be used in the convolution
remains to be determined. This length was determined by
comparing results obtained from a series of one-dimensional
spatial FIR filters based on an inverse Fourier transform of the
central column of the two-dimensional target transfer function.
In taking a one-dimensional inverse FFT of the central col-
umn, we generate an “ideal” one-dimensional spatial filter of
length 512. For computational efficiency, only a small number
of these coefficients, selected symmetrically about the filter
center, is needed. Analysis shows that a filter of length greater
than 51 provides little signal to noise improvement but
increases execution time.

Srinivasan et al. (1987) investigated a notch fre-
quency domain filter for destriping Landsat data. A similar
implementation using concentric rings constructed from two-
dimensional Butterworth filters was evaluated for this study. It
was rejected from further consideration because it tended to
produce significant ringing in the filtered image. Moreover, the
concentric notch design filtered along both spectral axes
equally. The one-dimensional filtering effect of both target fil-
ter implementations is better suited to the one-dimensional
nature of the stripes in GOES data.

2.2 AVHRR Mid-Infrared Data

The channel 3 data of the Advanced Very High Res-
olution Radiometer (AVHRR) on the NOAA series of weather
satellites (NOAA 6-12) are contaminated by instrumentation
noise. The signal to noise ratio (S/N) varies considerably from
image to image and the between sensor variation in S/N can be
large. Hence, the degree of filtering must be dependent upon
the level of noise in the original data and the filter must be
adaptive to variations in noise characteristics. For these rea-
sons a Wiener filtering model was chosen for implementation.

A parametric Wiener filter model (1) is used to mini-
mize the noise in AVHRR channel 3 data

S, = H,S; 1)

where S, is the Fourier transform of the smoothed output sig-
nal and S; is Fourier transform of the unfiltered input signal.
The transfer function, Hw, is given by
H o= —L1
w P,
1+ yP—S )

where Pn is the estimated noise power spectrum, PJ is the

estimated power spectrum of the uncorrupted signal, and y
controls the smoothing in the parametric Wiener filter (Castle-

man, 1979). For norational convenience, the frequency depen-
dence of the Fourier transforms and power spectra (egs. 1-3) is
suppressed. As 7y increases, more noise is removed but the
amount of blurring in the image also is increased. Our tests
indicate Y = 1 is a suitable choice. The primary difficulty in
using the Wiener filtering model is making reasonable esti-
mates of Pn and PS.

Because the noise content of the channel 3 data varies
from pass to pass, it is desirable that the noise power spectrum
be independently estimated for the image. In estimating the
noise spectrum, it is assumed that a significant amount of the
noise energy is contained in the higher frequency components
of the channel 3 image spectrum. This assumption is supported
by the data (e.g., Simpson and Yhann, 1994). The Fourier trans-
form of the noise, S_, is estimated as the difference between
the normalized Fourier transform of the unfiltered channel 3
data, §i, and the normalized Fourier transform of the low pass
filtered channel 3 data, §; Ipt

Sp = S~ Sup 3)
The Fourier transforms are normalized because the estimated
signal spectrum, as explained later, also is normalized. Because
all spectra are normalized, the noise to signal ratio in (2) is
maintained.

A circularly symmetric first order Butterworth low
pass filter (Gonzalez and Wintz, 1977) is used to generate the

Fourier transform of the low pass filtered channel 3 data, S D’
from the Fourier transform of the unfiltered channel 3 data, S i
The low pass filter bandwidth is in agreement with the domi-
nant frequency components identified by Warren (1989) as

being associated with the channel 3 noise!. A circularly sym-
metric low pass filter was chosen because the orientational
preference of the noise is not necessarily well defined. The

noise power spectrum is computed simply as: P’l = SnSn*
where Sn* is the complex conjugate of Sn' The noise power

spectrum will contain some signal energy because of the circu-
larly symmetric low pass filter used to generate gilp' The
effect of the signal energy in the noise power spectrum is par-
tially mitigated by the presence of a good estimate for Ps (ie.,
free of noise signal contamination).

The normalized channel 4 power spectrum is used as
a noise free estimate of the normalized channel 3 power spec-
trum, which corresponds to the power spectrum of the uncor-
rupted signal, Ps. Use of the channel 4 spectrum is justified
because both channels 3 and 4 have the same large-scale struc-

ture and they also show a high cross correlation over the ocean
in the absence of channel 3 noise (Simpson and Yhann, 1994).

Therefore, Ps = § ch 4§ ch 4* where S chd is the normalized

channel 4 Fourier transform and S ch 4* is its complex conju-

1. Note, Warren uses wavelength instead of frequency to plot
his Fourier transforms.
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gate. Normalization of the energy spectra insures that the prop-
er ratio is maintained between the noise spectrum computed
from the channel 3 data and the signal spectrum estimated from
the channel 4 data. This is necessary because channels 3 and 4
contain different amounts of total energy. Normalization there-
fore assigns equal amounts of energy to both the channel 3 and
channel 4 signals. Note, it was necessary to introduce the chan-
nel 4 data as an estimate of the channel 3 data to make the filter
defined by (2) signal dependent. Making use of the high corre-
lation between the channel 3 and 4 data to estimate the signal
power spectrum introduces the desired signal dependence into
the Wiener filter design.

3. APPLICATIONS
3.1. Radiometric Calibration

The GOES-7 VISSR solar channels were radiomet-
rically calibrated for the period from June 1987 through
November 1988 (Frouin and Simpson, 1995). Space, White
Sands, and the Sonora Desert are used as calibration targets.
The calibration is performed in three different ways: 1) using
the stretched data (i.e., retransmitted data operationally
destriped using NOAA's normalization procedure) and con-
sidering individual VISSR detectors separately; 2) using the
stretched data averaged over the 8 VISSR detectors; and 3)
using the stretched data further destriped according to Simp-
son et al., (1995) and then averaged over the 8 VISSR detec-
tors (Figure 1). Because of uncertainties in the modeling of
the VISSR radiance, using separate calibration coefficients for
each detector (first approach) may not reduce the striping sig-
nificantly. For best results, average calibration coefficients
should be applied to data destriped according to Simpson et
al. (1995).
3.2. Improved Cloud Detection

Examples of improved cloud discrimination which
result from reduced noise in AVHRR channel 3 data, are
shown in Figure 2. Simpson and Yhann (1994, Tables 3-5)
also provide a quantitative comparison of the Wiener filter
model with alternate noise reduction models (e.g. Minimum
Mean Square Error with Conditional Markov model). The
Wiener filtering model proved superior in all tests. The appli-
cation of neural networks to cloud screening of AVHRR data
over the ocean also was improved when the channel 3 noise
was removed from the data prior to its use (Yhann and Simp-
son, 1995). Improved segmentation of sea ice from AVHRR
scenes using fuzzy logic procedures also was significantly
improved by filtering the channel 3 data prior to its use in the
classifier (results not shown).
3.3. Robust Velocity Estimates

The maximum cross-correlation (MCC) method has
been used to compute both oceanic and cloud velocity vectors
from sequences of satellite data (e.g., Advanced Very High
Resolution Radiometer (AVHRR), Coastal Zone Color Scan-
ner (CZCS), Geostationary Observing Earth Satellite
(GOES)). Unfortunately, the two dimensional cross-correla-
tion functions used in the computation often contain saddle
points which can give rise to large magnitude and direction
uncertainties in the derived velocity estimates. A numerical
iterative procedure was developed which combines image
analysis methods (e.g., vector median filtering) and dynamical

constraints to minimize these difficulties (Simpson and Gobat,

1994). The resultant velocities are both physically realistic

and numerically stable. Thus, it also is possible to compute

stream functions and simulated Lagrangian drifters. The
validity of these results are confirmed with independent oce-
anic observations. Finally, the advective-diffusive equation is
solved for a few oceanic applications (e.g., prediction of sea
surface temperature, dispersal of anchovy eggs and larvae)
using the derived velocities.

4. CONCLUSION
Analysis of satellite data for geophysical and bio-

geochemical applications can be improved by using engineer-

ing methods (e.g., noise reduction methods, image
segmentation methods) prior to the specific scientific analysis.
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Figure 1:

(@

Raw and radiometrically calibrated VISSR
image of White Sands. (a) raw image (count
squared); (b) calibrated image using calibra-_
tion coefficients of individual detectors; (c)
calibrated average using calibration coeffi-
cients obtained by averaging count squared of
striped data; and (d) calibrated image using
calibration coefficients obtained by averaging
count squared of destriped data. Gray scale is
identical for all calibrated images. Data were
destriped using the method of Simpson et al.
(1995).
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Figure 2:
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Result of applying PCTSMC cloud screen
algorithm (Gallaudet and Simpson, 1991) to a
typical AVHRR scene. a) Channel 2 data for
the scene; cloud screen from b) Wiener filtered
channel 3 (e.g., Simpson and Yhann, 1994); ¢)
constrained least squares channel 3; d) interac-
tive noise subtraction filtered channel 3; e) ver-
tical 5 x 1 averaging filtered channel 3; and f)
notch filtered channel 3. The cloud screened
pixels in panels b-f also are shown in black.



