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ABSTRACT

The paper discusses a scheme based on Kalman-Bucy fil-
ters for the assimilation of satellite data in equatorial beta
plane ocean circulation models. The state equation of the
Kalman—Bucy filter is obtained by decoupling the non-
linearities from the Navier-Stokes equations by assuming an
inviscid isentropic shallow water motion. Direct application
of the Kalman-Bucy filter leads to a computationally inten-
sive algorithm which precludes its application to meaningful
sized domains. By imposing a Gauss Markov random field
(GMRF) structure on the error covariance matrix, we ob-
tain an efficient recursive algorithm, capable of estimating
the velocity fields and the sea surface height.

1. INTRODUCTION

The trend to achieve higher resolution in underwater ap-
plications is to couple detailed ocean general circulation
models (OGCM) [1] to the signal processing algorithms,
e.g., matched field approaches and acoustic tomography.
These models of ocean circulation are based on the Navier-
Stokes equations, but they do not provide high accuracy at
all scales and at every latitude. Increased accuracy is ob-
tained by coupling into these models data collected through
a variety of measurement programs, e.g., satellite derived
data, or data from moored or drifting buoys. In physical
oceanography, combining the ocean model dynamics with
ocean measurements is referred to as data assimilation [2].

Data assimilation in physical oceanography is challeng-
ing due to several reasons. We need to handle nonlinear
models and couple in randomness introduced for example
by the boundary conditions, forcing terms like wind stresses
and evaporation, or other physical quantities which are as-
sumed known. The volumes of data involved are large and
highly sparse.

In this paper, we develop recursive processing algorithms
based on discrete Kalman-Bucy filtering [3] for the assimi-
lation of satellite data. The nonlinearities of the model are
decoupled from the random aspects by assuming these to
lead to small perturbations of the nominal nonlinear solu-
tion to the primitive equations. We consider an inviscid,
isentropic, shallow water motion on a Beta plane. The
state equation for the Kalman-Bucy filter is obtained by
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discretizing the Beta plane approximation to the Navier-
Stokes equations and the continuity equations using finite-
difference approximations. The resulting state transition
matrix is block tridiagonal and the observation equation
based on the data-patterns obtained from the satellite scans
has a highly sparse observation matrix. This leads to effi-
cient recursive algorithms, capable of computing both the
estimates and the error statistics for the velocity fields and
the sea surface height.

The paper is structured in five major sections. In Sec-
tion 2, we discuss briefly the discretization of the Navier-
Stokes equation, simplified over a Beta plane. In Section 3,
based on Kalman-Bucy Filtering, we present an efficient
and recursive algorithm to estimate the ocean circulation.
Finally in Sections 4 and 5, we provide experimental results
and summarize the paper.

2. MODEL FORMULATION

2.1. Equatorial Beta Plane

We start by considering the set of the Navier-Stokes (NS)
equations (eqns. 1-3) and the continuity equation (eqn. 4), [4],
for the sake of completeness and to introduce notation.

du 9 U _ 1 dp
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where A, ¢, and r are the longitude, the latitude and the
radial co-ordinate, u, v, and w the velocity components as-
sociated with the co-ordinates A, ¢, and r respectively, p
the density, §2 the Earths angular velocity, and p the pres-
sure. In equations (1-4) we have assumed an inviscid flow
and ignored any forcing components.

We are interested in developing a numerical model for
assimilating observed data into the ocean model dynamics.
A model based on equations (1-4) is difficult and computa-
tionally intensive. We can however decouple the nonlineari-
ties in equations (1-4) by considering an inviscid, isentropic,
shallow water motion on an equatorial beta plane — the re-
gion which lies at latitudes of less than 30 degrees. In such
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a plane, equations {1-4) can be approximated by a set of
linearized equations, given below (see [5] for details)
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where 8 is a constant given by 2.3 x 1071 /ms, n the verti-
cal displacement of the ocean, H the ocean depth, r and y
the eastward and the northward distances, given by r and
r¢ respectively, and (X,Y) and E the forcing terms i.e.,
the surface stress, and the evaporation rate respectively.
Any form of forcing can be added to the right side of equa-
tions (5-7), so X, Y, and F can be given a wider interpre-
tation.

By using an equatorial beta plane approximation, we
have reduced the primitive NS equations and the continuity
equation to a set of linear partial differential equations (5-
7), which are easier to discretize and implement. These
equations will be used in our data assimilation model.

2.2. Finite Difference Approximation

There is a rich class of numerical schemes to solve partial
differential equations based on finite difference schemes, fi-
nite element schemes, or spectral schemes. We use the
Lax Friedrich method to discretize equations (5-7). Lax
Friedrich method is a second order finite difference scheme,
which approximates the first order time and the spatial
derivatives of a function, say ¥, in the (z,y) plane at time
t as follows

OV Vijks — 3 (i + Vigrin+ Vij—1x+Vij41x)

at At ()
Y Wipiie — Wik
8t 2Az )
AV Wijyie — Wij—1k
dy 2Ay (10)

where we have divided the (z,y) plane into a uniform grid
of width Az and Ay. The time duration t is divided in
intervals of At. The indices ¢ and j represent the point
(zi,y;), which correspond to the point (1Az,jAy) on the
grid. The index k represents the time instant ¢x or kAt
¥k is the discretized value of ¥ at the coordinate (z:, y;)
at time instant ¢x and equals ¥(z;, y;), and similarly for the
other terms in equations (8-10). For simplicity, we assume
a rectangular (z,y) plane of finite dimensions so that ¢ and
7 have an upper limit, say I and J respectively.

Following standard procedure, we stack the values of
u for row i at time index k into the J x 1 vector U =
[witk ik ...uisk]T. We do a similar procedure on v, 7,
X, Y, and F so that their ith rows at time index k are
represented by J x 1 vectors V¥, N¥, Xk, Y¥ and E¥ re-
spectively. Finally U¥, V¥, and N* are stacked together
into the 3J x 1 vector XF = [U.-"T V,~kT MkT]T, and
Xk, V¥, and EF stacked together into the 3J x 1 vector
wk = [X,"T o E,"T]T. Equations (5-7), after dis-
cretizing by the Lax Friedrich scheme, are expressed in a

matrix form by stacking the values of uijx, vijk, and 7.
Taking into account appropriate boundary conditions, we
obtain
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where B, B, B2, C, D, and F are all 3J x 3J blocks.
The blocks B;, and B; are slight modifications of blocks B
accounting for the boundary conditions. The blocks B, C,
D, and F have the following structure
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where A; and ), are given by % and %. I;is the identity

matrix of order J. H; and ®; are J x J matrices given by
01 0 0 0 O
1 0 1 . 01 0 .
0 1 0 0 0 J-1
K% is the same as HY except the entries of the lower di-
agonal, which are -1. In the following discussion, we will
refer to equation (11) as the state equation. Solutions of
the state equation are stable only if At, Az, and Ay, sat-

isfy Courant, Friedrich, and Lewy (CFL) conditions [6]. For
the above discretization, the CFL conditions are of the type

gH gH<1

JAy 4 4 2 <
(BJAY) +Az2+Ay2_At2

(16)

3. DATA ASSIMILATION ALGORITHM

We will now describe the data assimilation algorithm. The
vector [W1 W, ...W,] in the state equation contains the
forcing terms, for example the wind stress (X,Y) and the
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evaporation rate E. Each of the forcing terms can be de-
composed into deterministic and random components. The
deterministic components are used in an ocean general cir-
culation model (OGCM) to construct an ocean field, re-
ferred to as the mean ocean field. The random component
drives the data assimilation model. We assume that the
random components are white and Gaussian, and has a
known covariance, i.e., E{W.'WJT} = Q;é;;, where £ denotes
the expectation operator.

This paper is concerned with the assimilation of satellite
data to ocean circulation models. Satellite data assimilation
is extremely challenging since satellite measurements are at
spatially separated points along the satellite track and are
corrupted by noise. For simplicity, consider a rectangular
basin discretized into a mesh of I rows and J columns, the
rows oriented towards north and the columns towards east.
It is assumed that the satellite scans one row during each
satellite scan. During the duration of each satellite line
scan, we further assume that the ocean characteristics do
not change significantly. The satellite measurement model
is given by

Vi o= OnXn+W 7

where X%, is the 3J x 1 vector defined earlier, Y%, the
observation vector, and W* the observation noise, assumed
Gaussian with a covariance matrix denoted by R,,. The
index m denotes the row scanned by the satellite.

Direct application of the Kalman-Bucy filter using equa-
tions (11) and (17) is computationally intense and difficult.
We simplify the algorithm by using the tridiagonal block
structure of the state transition matrix, i.e., the matrix
containing blocks B, C, and D in equation (11), and the
sparseness of the observation. We denote the error covari-
ance matrix P to be {P;;} for 1 < ¢,j < I. Substituting in
the Kalman filtering equations [3], each vector and matrix
by blocks, i.e., substitute P by {P;;} and similarly for the
other variables, we get the recursive algorithm given below

Predictor update:
Xi(k + 1]k) = DXi_1(k|k) + BXi(k|k) + CXiy1 (k| k)
1<i<I  (18)
Predictor covariance update:
Pij(k+1]k) = Qbi;+
(DPi1j—i(k| k) + BP:j—i(k| k) +CPis1j1(k + 1| k)) DT+
(DPi-1;(k| k) + BP;j(k|k) + CPip1j(k +1]k)) DT+
(DPi_1j41(k| &)+ BPija(k| k) +CPiy1;41(k + 1] k)) DT
1<i,j<I  (19)
Filter update: if rem(kAt,t,) =0
Zi(k+ 1|k + 1) = Bk + 1| k) + Pink + 1| k)E5(K)
(R + ©i(E) Pam©OL (k) ™1 (Vm — Om (k) Xi(k + 1| k)
else Xi(k+1|k+1)=X(k+1]k) 1<i<I (20)
if rem(kAt, t,) =0

Filter covariance update:

Pij(k+11k) = Pk + 1| k)~
Pk +1|k)4+OT(R 4 O Prun©%) 10 Pk + 1| B)

else Pi(k+1|k+1)= Py(k+1]k) 1<4,5<I (21)

where rem(kAt,t,) is the remainder of kAt/t,, and ¢, is
the duration inbetween two satellite scans. The OGCM
provides estimates of the mean ocean fields, say fields for
u, v, and 5. To construct accurate maps, we need to couple
the satellite data into these mean ocean fields. This is done
by the data assimilation algorithm as follows.

For simplicity, we consider a rectangular basin, divided
into a. mesh of width Az and Ay, resulting in say I rows and
J columns. The update time At is evaluated using the CFL
conditions of the type given in equation (16). The index &
represents t}l\e update time t;x which equals kAt. We start
at k = 0. X;(0|0) and Pi;(0]0) are the initial conditions.
Using equations (18) and (19), we form estimates of ;(1]
0) and Pij(1|0) for 1 <i,5 <I,J. After prediction, the
predictor checks if satellite data is available. Assume that
the satellite scans row m and measures u, v, and 1. Mean
ocean fields, u, v, and 7, for row m are subtracted from the
measurements and the difference is fed to the filter. Both
Xi(1|1) and P;;(1j1) for 1<4, <1, J are then updated using
equations (20) and (21). The predicted values A”:(l|1) for
1<i< 7 are added to the mean fields i.e., to the input to
the OGCM. If the satellite does not provide data, Xi(1]1)
and P;;(1|1) are set equal to X;(1]0) and P;;(1|0). This
completes one iteration. The value of k is then incremented
and the process repeated.

The data assimilation algorithm of equations (18-20)
has one implementational issue. For the example considered
above, the error covariance matrix P is of the order 31J x
3IJ. For meaningful sized domains, this will cause a serious
storage problem. We circumvent the problem by imposing a
first order Gauss Markov structure on P. In [7], it is shown
that a first order GMRF has a covariance matrix, of the
form (UTU)~! where U has the bidiagonal structure given
below

Uy 0. 0 0
o U, 0 0 .
v=| - 2 Us Os 0 (22)
0 Us

By expressing PU = U7, substituting from equation (22)
for U and {P;;} for P, and equating the lower triangular
entries we get

P = (UFUD)™! (23)
PyUF + P07 = (U;)7Y6 1<i<1,1<5<i(24)

Equations (23-24) show that any P;; can be evaluated re-
cursively from O;s and U;s and vice versa. In our data
assimilation model, instead of propagating P;; we propa-
gate U; and O;. This reduces significantly the storage re-
quirements and the computational effort associated with
the filter.

4. EXPERIMENT

To test the data assimilation scheme presented in Section (3),
an equatorial channel version of the Pacific ocean was sim-
ulated. We considered a rectangular basin of length 1500
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Fig. 1: Mesh plots of (a) latitudional component of veloc-
ity (b) longitudional component of velocity (c) sea surface
height, shown at same scale. In (a) - (c), the left plot
displays simulated actual field, the center displays mean
OGCM field, and the right displays satellite data assimi-
lated field using the algorithm described in the paper.

km in x-direction and 750 km in y-direction. The ocean
coastline was omitted. The resolution in x-direction was
chosen to be 150 km and in y-direction 75 km. The time
step was 12 minutes, which satisfies the CFL conditions. To
simulate real conditions, we started with an initial distur-
bance of height 20 cms at the center of the basin. The
shape of the disturbance was chosen to be normal, i.e.,
Kexp(—zizg- - 2%}) with o, and oy selected to be 400 km

and 100 km respectively. The horizontal wind stress was
assumed to be sinuscidal, i.e., X = X, sin E,;"- with X, set
to 0.2 N/m? and b set to 750 km. The evaporation rate E
was made zero. We ran two OGCMs based on equations (1-
4) for 10 days to simulate fields for the velocity components
u and v, and displacement 7. In the first setup, we intro-
duced 20% randomness in X. The second had X as the
wind stress. The first setup was assumed to simulate real
oceanographic conditions, while the second constructed the
mean or the deterministic components for u, v, and 7.

To construct the random components for u, v, and 7,
the data assimilation model, described in Section 3, was
run on the above data. The initial conditions were set to
Xi(0]0) =0 and P;; = Iy for 1<14,5 <1I. It was assumed

that the satellite scans the region every 4 hours and provides
observations for «, v and . During each scan, the satellite
scans one complete row. 10% randomness was added to the
observations to simulate noise.

In Fig. (1), we provide mesh plots for the three fields u
(Fig. 1(a)), v (Fig. 1(b)), and 5 (Fig. 1(c)) 410 hours after
the initialization, constructed using the three techniques de-
scribed above, i.e., actual fields simulated under the afore-
mentioned conditions, mean fields constructed from OGCM,
and data assimilated fields constructed using the proposed
algorithm. It is apparent that the data assimilated mean
fields provide us with better estimates of the actual condi-
tions than the mean field delivered by OGCM.

5. SUMMARY

The paper proposes a framework for the assimilation of
satellite data in ocean circulation models. The framework
is obtained by expressing the Kalman-Bucy filtering in a
sub-block structure. This and the approximation of the er-
ror covariance as a first order Gauss Markov random field
led te fast recursive algorithms capable of estimating the
velocity fields and the sea surface height. We showed that
fields obtained from assimilating satellite data into the the
mean fields, using the recursive algorithm outlined above,
provides us with better understanding of the ocean circula-
tion and yields efficient estimates.
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