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ABSTRACT

Large-scale extended Kalman filters for atmospheric and
oceanic circulation models can readily be approximated us-
ing a wavelet transform or a Markov random field model.
For a filtering problem where the unknown field of the state
variables is highly correlated and the observations are rel-
atively sparse, the wavelet-approximated filter seems more
appropriate. For a problem in which the covariance matrix
is non-singular and a relatively large quantity of indepen-
dent observations are processed, the MRF-approximated fil-
ter seems more appropriate.

1. INTRODUCTION

Recent technological and economical improvements in com-
putational resources have contributed to growing interests
in application of large-scale Kalman filter to atmospheric
and oceanic circulation models [1]. By assimilating noisy
measurements of various types into these models, meteo-
rologists and oceanographers generally aim to improve the
forecasting capability and error estimates. The Kalman fil-
ter and associated smoothing algorithms are also expected
to provide a sophisticated data analysis tool which can
improve initial and boundary conditions as well as insuf-
ficiently known model parameters [2].

Estimation of atmospheric and oceanic variables; such
as pressure and wind/current velocity fields;, with a Kalman
filter is computationally demanding, as the number N of
state variables tends to be O(10° ~ 10°). The main com-
putational issue is the recursive updating of the covariance
matrix, requiring prohibitive O(N?®) flops per time step.
Just as important is the issue of storing the N? elements
of the covariance matrix; as it is more desirable to allocate
any gain in computational resources to improve resolution
of the variables, i.e., to increase N, rather than to store the
entire covariance matrix.

We present two approaches to parameterize the covari-
ance matrix in such large-scale Kalman filters. In one ap-
proach the covariance matrix is represented by a truncated
set of its wavelet coefficients, while in the other approach
the inverse of the covariance matrix (information matrix)
is represented only by the elements at selective matrix lo-
cations. These parameterization schemes lead to computa-
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tionally efficient implementations of the extended Kalman
filter, in which the storage and computational requirements
for the covariances are reduced to O(N).

2. ALGORITHMS

Let x(t) denote the N-dimensional vector of state variables
at time t of a circulation model. The partial differential
equations representing the model can then be expressed
generically as

—=x = f(x) (1)

where f(-) is an aggregate of nonlinear (e.g., cross mul-
tiplication) yet spatially local (e.g., partial derivative over
space) operators. For example, in a layer of constant-density
water, the dynamic states of the layer depth and horizon-
tal velocity can be described by a set of nonlinear partial
differential equations called the “shallow water equations”,
which can be stacked to represent a multi-layered (in terms
of density) body of water and serve as the basis of an ocean
general circulation model [3].

Noisy measurements of the state vector are assumed to
be provided at discrete time t = k7, k =1,2....; as

Yi = CiXr + Ve (2)

where xx = x(k7), 7 is the measurement interval, and vk
is a zero-mean Gaussian noise process with covariance Rg.
We require the observation to be spatially local. Namely,
the weighted sum operation performed by each row of the
observation matrix Cx must have a local support in the
spatial domain. Correspondingly, the observation noise is
assumed to be only locally correlated so that Ry is diagonal
or block diagonal with small block sizes. Under this spa-
tial locality requirement, Ci would be a very sparse matrix
and R, would be sparse and easily inverted. Most measure-
ments in practice are spatially localized as required (with a
notable exception of tomographic measurements).

2.1. A wavelet-based Kalman filter

An extended Kalman filter for the dynamic system (1.2) can
be formulated by first discretizing the partial differential
equation (1) as

Xpe = Xpe—1 + Tf(xk—l)- (3)
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Let the N x N matrix F, be the first-order term in the
Taylor expansion of 7f(-) about the filtered estimate Xk
at time step k, i.e., Fp = -r[ g)fg(ip.) ] Note that F,
is a sparse and spatially local matrix. Given an estimate
-, and its associated estimation error covariance 13;._1
at time k — 1, these two quantities can be updated by the
measurement at time k as

Fh — p(I + Fk—x)f,k—l(l + Fk—l )l (4)
Xe = f(ih—l) (5)
K. = P.CL(CuPuCl+Ra)™ (6)
B. = P.-KiCiP, (M)
e = Xu+Ki(ys — CuXi) (8)

where the superscript ' denotes transpose. The parameter
p > 1 compensates for uncertainty (error) in the dynamic
model itself and prevents the filter from becoming insensi-
tive to measurements over time. A more general approach
to represent model uncertainty is presented in [4].

As detailed in [4], the covariance matrix P can be pa-
rameterized by orthonormal wavelet bases to approximate
the filtering algorithm, based on a physically plausible as-
sumption that correlation between a pair of variables de-
cays exponentially with the distance between the variable
locations. The covariance matrix is compressed by trun-
cating the wavelet coefficients of the matrix. Specifically,
P is transformed into the so-called “standard form”, and
only the elements along certain bands (“fingers”) of a given
width w are computed and stored [5]. Such a compressed
covariance matrix can be represented with only Nw(3 —
2'74) coefficients, where £ is the resolution level of the
transform. In the approximate filtering algorithm, the co-
variances remain in their compressed form in the transform
domain throughout the recursion over time. Availability
of compactly supported orthonormal (wavelet) transforms
[6] makes this filtering algorithm computationally efficient;
compared with a similar algorithm that depends on other
covariance-compressing transforms such as the cosine trans-
form. With a version of the shallow water equations im-
plemented over a cyclic domain, we have verified that the
wavelet-based approximate filter can produce estimates just
as accurate as the optimal Kalman filter {4].

2.2. An MRF-based Kalman filter

In an alternative implementation of the extended Kalman
filter, the inverse L of the covariance matrix P is recursively
updated instead of the covariance matrix itself.

The dynamic model (1) is time-discretized “implicitly”
as

Xk + Tf(Xk) = Xie-1. (9)

- - . - kol .
The recursion for Xx and Ly, given Xk—1 and Lx_1, is

T = o 'I-Fus)Lui(I-Fecy)  (10)
Xe = f(Xu-1) (11)
L. = L.+CiR;'Cs (12)
Ze = LiXx +CrR; ye (13)
% = L.z (14)

Since F, C, and R are sparse and spatially local all ma-
trix multiplications in this filtering algorithm can be im-
plemented efficiently (and in parallel); as long as the infor-
mation matrix L is sparse and spatially local. (The matrix
inversion in (14) can be performed efficiently by an itera-
tive inversion scheme, because a favorable initial condition
X is available.) Fortunately, the information matrix of a
space-time process governed by local constraints tends to
be sparse and local, and the filtering algorithm can be ap-
proximated efficiently by simply constraining the structure
of the matrix L [7]. (Without such a structure constraint,
L loses its sparseness over time due to the steps (12) and,
particularly, (10).) Namely, a sparse and spatially local
structure is pre-determined for the matrix L, and only the
matrix elements in this structure are actually computed and
stored in the approximate filter. The approximate filtering
algorithm is shown to produce near-optimal estimates in (8]
(which also presents a general method to deal with model
uncertainty).

As detailed in [7], the information matrix L can be con-
sidered as a spatial model for the corresponding estima-
tion error process X — X or X — X at a given time instant.
Conceptually, the approximate filtering algorithm described
above is obtained by treating each of the steps (10) and (12)
as a model realization process for the error field and then
approximating the resulting optimal field models with ap-
propriate ones of reduced order. Such reduced order field
models may be viewed as arising from the imposition of a
Markov random field (MRF) structure on the estimation
eITor processes.

2.3. Numerical tradeoffs

In the first filtering algorithm (4-8), the covanance ma-
trix P is explicitly updated at each time step. In the sec-
ond algorithm (10-14), on the other hand, covariances are
implicitly updated as the filter performs recursion on the
inverse L of the covariance matrix. Success of the approx-
imate filtering strategies depends heavily on how well the
non-approximated forms of extended Kalman filter matches
with the particular filtering problem at hand. For example,
the initial condition X is often assumed to be a highly cor-
related, or even deterministic, field in practice. Only the
explicit algorithm (4-8) would be suitable for such a fil-
tering problem, as the nearly-singular P would make the
implicit algorithm (10-14) unstable.

Computational efficiency of the explicit algorithm de-
pends partly on the density and volume of the observation.
Specifically, as detailed in [4], the matrix inversion in step
(6) is made efficient by exploiting spatially local and inde-
pendent properties of the measurements at a given time step
k (as reflected by the diagonal structure of Ri). For each
k. the steps (6-8) are repeated as many times as the num-
ber of the statistically independent units of measurements.
The wavelet parameterized version of the explicit algorithm
inherits this performance dependency on measurement vol-
ume.

The implicit algorithm (10-14) seems quite suitable for
over-constrained filtering problems, in which large quan-
tities of statistically independent measurements are pro-
cessed. Namely, such measurements can prevent the field of
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state variables from acquiring deterministic (singular) char-
acteristic and improve the condition number of the matrix
L and, hence, convergence of an iterative solution to the
inversion step (14).

3. APPLICATIONS

Kalman filters are expected to prevent circulation models
from diverging. To present an extreme example, a straight-
forward discretization of the shallow water equations tends
to be highly unstable as shown in Fig. 1. We have simulated
observation of the “true ocean” by using a stable numerical
implementation [3] of the equations, which produces the
depth and velocity fields at a given time interval. Using
the MRF-approximated filtering algorithm, a part of the
simulated observations is assimilated into the unstably dis-
cretized model. Assimilation of only a quarter of the depth
field at each time step leads to dramatic improvements in
both the depth and velocity fields; as shown in Fig. 2.

Also, to demonstrate a flexible use of the filtering algo-

rithms, a boundary condition is incorporated into the model
as an “observation” of the filter. Namely, a coastline is in-
troduced into an ocean basin by making observation of the
depth h and velocity u as h = constant and n-u = 0, where
n is the unit vectors normal to the given coastline; along
the coastline and over the assumed “land” area. Using the
MRF-approximated filter, the observations are gradually
incorporated into a land-free circulation pattern, by con-
trolling the observation noise variances at each time step.
As shown in Fig. 3, the resulting circulation pattern ap-
pears to have reorganized itself as though the coastline had
always been there.

The state dimension N in these examples was O(10%).

Each recursion of (10-14) took 1 ~ 3 minutes on a DEC
Alpha workstation.

4. CONCLUSION

Two generic forms of extended Kalman filter for atmo-
spheric and oceanic circulation models have been presented.
Each form can be approximated for a computationally ef-
ficient implementation. There are numerical tradeoffs be-
tween the two approximate filtering algorithms. At present,
we are evaluating these tradeoffs in order to develop a prac-
tical filter implementation for a specific ocean general cir-
culation model (Miami Isopycnal Coordinate Ocean Model
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Figure 1: Depth (top) and velocity (bottom) fields pro-
duced by an unstable implementation of the shallow water
equations, after 72 time steps (corresponding to a single
simulation day).
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Figure 2: Depth and velocity fields produced by the same
unstable model as Fig. 1, supplemented by partial observa-
tions of the correct depth field (after 72 steps). The solid
contours represent peaks in the depth field, while the dashed
contours represent depressions. Except for the small area
of spurious oscillations in the center of the depth field, the
depth field observation has overcome numerical unstability
in the model and has led to accurate estimate of both the
depth and velocity fields.
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Figure 3: Output fields of the dynamic model supplemented
by the “coastline model” after 800 time steps. A triangular
area extending from the upper left corner and along the
left edge of the field is considered to be “land”. As the land
has been gradually, instead of abruptly, incorporated into
a flow field similar to one displayed in Fig. 2, the gyres in
the depth and velocity fields have reorganized to retain their
characteristic circulatory patterns, instead of truncating the
patterns.
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