A Cramer-Rao Bound on Acoustic Measurement of Ocean Climate Change
in the Presence of Mesoscale Sound-Speed Variability

Jeffrey L. Krolik and Sunil Narasimhan
Department of Electrical Engineering, Duke University
Durham, N.C., 27708-0291

Abstract

The ability to measure climate-related mean changes in ocean
temperature is fundamentally limited by the presence of mesoscale
variability. In this paper, the Cramer-Rao Lower Bound on the
estimation of the mean depth-dependent temperature profile is
evaluated to determine the highest accuracy which could be
achieved by acoustic thermometry of ocean climate (ATOC).
Evaluation of the bound is performed using a model of sound-speed
variability derived from real Pacific ocean environmental data.
Resuits indicate that a low-order Chebyshev polynomial may be a
good choice for climate signal representation. The general behavior
the bound is determined by a subtle interaction between the climate
signal basis, @ priori mesoscale noise statistics, and observation-
time-bandwidth-signal-to-noise ratio product.

1. Imtroduction

The measurement of ocean temperature changes over large
spatial-scales (>500 km.) provides both a means of monitoring
global warming as well as the data necessary to validate coupled
ocean-atmosphere climate models. However the estimation of large
spatial-scale changes in ocean temperature is fundamentally limited
by the presence of mesoscale (~100 km.) temperature variability.
Because ocean acoustic propagation depends on the range-averaged
sound-speed (and hence temperature) profile, long-range acoustic
transmissions have been proposed as a means of filtering out
mesoscale variability in order to measure a global warming related
trend in the large spatial-scale temperature distribution {1], [2].

In this paper, the Cramer-Rao Lower Bound (CRLB) on the
estimation of the mean depth-dependent temperature profile in the
presence of mesoscale sound-speed variability is evaluated to
determine the fundamental accuracy limits which could be
achieved by ATOC. This paper extends previous work where a
CRLB has been derived assuming a fully-spanning array and
limited signal bandwidth such that the modal group delays are
sufficient statistics for the global warming signal [3]. In this paper,
a more general bound applicable to non-fully-spanning broadband
arrays is discussed.

II. Stochastic Environmental and Acoustic Propagation
Modeling of the Ocean Environment

Consider an underwater acoustic waveguide with a random
range-dependent sound-speed profile, ¢ (z, r) , given by:

c(z,r) = co(z) +Ac(z, r) )]
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where c,(z) isthe assumed background sound-speed profile and

Ac(z, 1) «c,(z) is a random sound-speed perturbation. The

sound-speed perturbation Ac(z,r) consists of an unknown

nonrandom mean “climate-signal” component, &c(z) plus a
random mesoscale component represented in terms of empirical
orthogonal functions (EOF’s), vy, (2) , [5] so that:

L

Ac(z,r) = 8c(2) + X g,(Nw,(2) @
=1

where the g, (r), I =1,.., L are zero-mean stationary random

. . 2 .
processes with variances O, that describe the range dependence of
i

each mesoscale component. To estimate the mean sound-speed

profile or equivalently dc(z) express:
M-t
8c(z) = X b,T,(2) 3)
m=0

where the functions T, (z) define a basis for the space of climate
signals which can be estimated without bias.

Acoustic thermometry consists of long range transmission of a
known T second broadband acoustic source signal to a vertical

receiving array of M sensors. In an adiabatic acoustic ocean

waveguide supporting N normal modes, applying first-order
perturbation theory, the vector of Fourier coefficients of the array
outputs at frequency @, = 21k/T due to a source at range r, and

depth z, in the presence of Gaussian zero-mean additive noise

n(w®,) canbe expressed as [4]:

a(w,
Jrs

where the mn'” element of the MxN matrix U, is ¢ ,fo) (z,) -the

x(w) = )U050v+n(mk) 4)

n* diagonal element of the NxN diagonal matrix S, is

., (0)

‘Ikn r-\'
A/Z-t( <P,Eo) (z)/ k,(,o) )e , and the vector
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v(5,8) = exp(Ab+jAg) . The ¢ (2) and K9 are

respectively modal depth eigenfunctions and horizontal
wavenumbers corresponding to the waveguide with background

profile ¢, (z) . The " element of the Lx/ vector g is given by

r

El(rs) = j'gl(r) dr and exp(x) denotes the eclement-wise
0

exponential function. The ni™ element of the NxL matrix a, is

given by:
w| @ @ )2
e o ()
{A} = — v, (z2)dz S)]
8 nt k:o)b[ ¢,(2) !
ie. the n'* horizontal wavenumber perturbation due to the e

mesoscale EOF. The nI® element of A, is defined by Eq. (5) but

with  r.T,(z) associated with the [ h climate signal basis

function replacing ¥, (z)

Given a source of bandwidth W Hertz and
T » noise correlation time, acoustic thermometry consists of

N T .
estimating b = [b,, ..., by, 1" in the presence of the random
mesoscale parameter vector, g, using the TW uncorrelated
frequency-domain snapshots, x (®)), ...,x (®,) , over the signal
frequency band from @, to @, . Substituting the estimated & into

Eq. (3), the estimated temperature perturbation, 8T (z) , is obtained

from 8T (z) =3¢ (z) % where g—: can be computed from the Del

Grosso equation relating sound-speed and temperature [6].

III. A Hybrid CRLB for Acoustic Measurement of the
Climate Change Signal .

In light of the climate signal representation of Eq. (3), the
CRLB on estimates of 8¢ (z) can be expressed as:

Var(8c(2)) 2 T@ T ) T(2) ©6)

where J(b) is the Fisher Information Matrix (FIM) for b and

T(2) = [Ty(2), .., Tyy_, (z)]T . In the present case, the

T
unknown parameter vector is defined by © = [bT, ETJ which
includes both unknown deterministic and random parameters.

Because of the difficulty in computing J(d) in such “mixed”
cases, a “hybrid” CRLB derived by Rockah [7] is applied here:

Cov(B(x)) 2 (E,(J(8)) +Jp) @)

2

0 — Inf (g)} for indices

where {J,} =E {——————_
Py Bl o8 y9%_y

iorj = M, ..M+ L and zero otherwise. Note that f(g) isthea

priori probability density of the mesoscale parameters. Since the
source range is large relative to the correlation range of the
mesoscale perturbations, the Central Limit Theorem implies that

f(@

distribution assumed for g, (r) .

is approximately Gaussian quite independent of the

The complete derivation of the hybrid CRLB of Eq. (7) for the
acoustic and environmental model described in section 2 is given in
[8]. Here the behavior of the bound is illustrated by considering

some limiting cases where Eg (J(8)) can be simplified. In

particular, consider the case where the signal bandwidth, W, is
small, the noise is spatially uncorrelated and the array is fully-
spanning. In this case. the hybrid bound is given by:

Var (8¢(2)) 2T(2)T1,”' T (2) =B, (2) ®)
The FIM J, can be expressed as:

Iy = K:Kb‘K;I[Kg(Kng"'R;l)_IK:’]Kb ©)
K, = 2TWEA A,
A/;T“/XS = diag(Zn(

noise ratio (SNR) at the receiving array is denoted by § . The LxL

where

K, = [2TWEA,A, and

2
/k;o) )) . The signal-to-

(P,fo) (zy)

. . . . 2 2 .
correlation matrix of g is RE = dtag(%) where O, is the
i 1

variance of g,(r;) . For a simple lowpass mesoscale horizontal

. . 2 2
process with correlation length, r, then G, =0, 17 . From Eq.
i I

(9) at a sufficiently high SNR such that Kg Kg » R;l , J, can

be expressed as:

I, =1+ R;‘Kf[xg(xfxg)_zlf”] K, (10)

g

where J, is the FIM for the estimation of the mean sound-speed

parameters in the presence of nonrandom unknown g . The second
term on the right-hand side of Eq. (10) corresponds to the increase

in information due to knowledge of the prior distribution on g .

The least informative scenario corresponds to the case when the
mesoscale EOF’s are also the climate signal basis functions. In this
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case. J, =0 and Eq. (10)  becomes

n

simply

J, = diag{r/ rlolz} . This performance corresponds intuitively

to what could be achieved by simply averaging the random
mesoscale process over the source range r, .

Another case of interest is when the signal bandwidth is small
and the noise is spatially uncorrelated, but the sensor array does not

fully span the water column. In this situation, for large O;‘ , and

assuming Ag m—A anl® 0 for all m #n the mesoscale variability
essentially decorrelates the modes and
now:
H 2
J, = 2TWE[A,"A,A,] - (2TWE) an

H H 1)1 H
xAbAuAg(szgAg AL +R, ) A AL,

where the elements of the diagonal matrix

2 $

A} = diag(21t M
nn m=1

that Eq. is comparable to the fully-spanning array case with the

diagonal elements of A, weighted by the norm of each modal

2
0 )| = |of | 782 ) Note

eigenfunction sampled at the array elements. Further, observe that
in the case of a single sensor receiver, the bound is unchanged when
source depth and receiver depth are interchanged as might be
expected due to the reciprocal nature of acoustic propagation under
this model.

IV. Evaluation of the CRLB in Pacific Environment

In this section, the CRLB for measurement of the mean
temperature profile is numerically evaluated for a Pacific deep-
water ocean environment using a realistic representation of
mesoscale sound-speed variability. The acoustic source is assumed
to have a flat bandpass energy spectrum from 50 to 70 Hz. The
numerical normal mode propagation model KRAKEN [9] was used
to compute the required depth eigenfunctions and horizontal
wavenumbers of the channel across the signal frequency band. The
Pacific environmental data was obtained using first and second-
order sound-speed profile statistics derived from a set of
approximately 200 CTD, AXBT, XBT, and XSV measurements
over a range of approximately 1000 km. in the North-East Pacific in
July, 1989 [10]. The background profile and first five mesoscale
basis functions normalized by the associated mesoscale component

standard-deviation, i.e. & gl\vl (2),! = 1,...,5 for this data set are
shown in Figure 1. The first five EOF’s accounted for over 95% of

the variation in the mesoscale dataset. Since there was insufficient
data to estimate range correlation distances, r, = 100 km.

corresponding roughly to the scale of mesoscale inhomogeneities
was assumed for each component.

To represent a general class of climate signals, a finite-order
Chebyshev polynomial basis was used. In order to summarize

estimator performance at all depths, B: = fmax {B,(2)} , was
z

z=0 to
z = 2000 which includes all depths where climate-related changes

calculated where the maximum is taken over

are expected to occur. Note that BZ is a lower bound on the

maximum mean temperature estimate standard deviation over
depth.

Figure 1  Background Profile and Mesoscale Basis Set
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The behavior of the CRLB on mean temperature estimation as
a function of observation-time-SNR product at a fully-spanning
receiving array is shown in Figure 2 and Figure 3. The true climate
signal is assumed to be a decaying exponential with a maximum at
the ocean surface. The source is assumed to be at the sound-speed
channel-axis depth of 700 m. and range of 5000 km. Two climate
signal basis sets are considered: 1) Figure 2 corresponds to the case
where the exponential climate signal shape is assumed known, and
2) Figure 3 corresponds to the case where a sixth-order Chebyshev
polynomial basis set is used. The curves labeled “Known
mesoscale” correspond to the CRLB when the random mesoscale
component is assumed known and equal to zero. The curves labeled
“Random mesoscale” correspond to the CRLB when the random
mesoscale component is present. Note that in both figures, three

regions can be identified: 1) low T& , where the “known” and
“random” mesoscale curves are equal indicating that estimation

performance is additive noise limited, 2) intermediate T where
the “random” mesoscale curve is relatively flat and the bound is

.. Lo . 2
limited by the a priori mesoscale component variances, O and 3)
i

high T€ where the bound is limited by the difficulty in jointly

estimating b and g . The threshold values of T& which define

these regions are a non-trivial function of the climate signal basis
and mesoscale statistics. For the known climate signal shape case,
Figure 2 indicates that the presence of mesoscale variability
dramatically increases the bound. For the Chebyshev signal case,
Figure 3 indicates that the mesoscale variability has less affect on
the bound. Comparing the “random” mesoscale curves of Figure 2
and Figure 3 indicates that in the presence of random mesoscale
noise, only a slight increase in the bound over the signal known
case occurs when a Chebyshev signal basis is used. Therefore a
low-order Chebyshev polynomial basis set appears to be good
choice of climate signal representation for ATOC.
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Figure 2 CRLB Using Exponential Signal Basis
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Figure 3 CRLB Using Chebyshev Signal Basis
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The final figure illustrates the effect on climate signal
estimation performance of decreasing the receiving array length.
The bounds in Figure 4 are for the Chebyshev climate signal and

TE =30 dB. The sensor array is assumed to be centered at the

sound channel axis with an inter-element spaced of 8 m. Observe
that both the hybrid CRLB and the known-mesoscale CRLB
decrease as the number of sensors increases. The bounds as a
function of number of sensors are plotted out to 175 elements
equivalent to an array length of 1400 m. which corresponds to the
SOFAR channel depth. Note that at the array length maximum, the
bounds agree with the fully-spanning results in Figure 3. For
shorter arrays of less than ten sensors, as proposed in the GAMOT
experiments [2] observe that the bounds are considerably higher.

Figure 4 CRLB versus Receiving Array Length
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V. Conclusion

It should be noted that the bounds evaluated here assume only
a single acoustic transmission is available and thus do not account
for the performance gain which could be achieved by averaging
mean profile estimates over multiple time periods corresponding to
different mesoscale sound-speed profile realizations. Finally, a
limitation of the CRLB presented here is that it assumes strictly
adiabatic long range propagation. In recent work [11], it has been
suggested that small-scale internal wave fluctuations cause non-
adiabatic acoustic scattering which can be seen over long ranges.
Taking this phenomena into account would likely result in
somewhat higher bounds on acoustic thermometry of ocean
climate.
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