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ABSTRACT

The mixture model is an attempt to accurately model
the ground truth in the case of low-resolution remote-
sensed imagery. The model assumes that a pixel in
the image does not consist of a single class, but con-
sists instead of the sum of fractions of various classes.
We use an iterative least squares approach to estimate
these fractions for every pixel. Results are provided on
synthetic data as well as real AVHRR data from the
African continent.

I.Introduction

This work is part of the NSF Grand Challenge Pro-
gram on High Performance Computing for Land Cover
Dynamics at the University of Maryland College Park
campus. The program is highly interdisciplinary and
involves physical earth and computer scientists as well
as electrical engineers. We are aiming at the develop-
ment of scalable and parallel solutions to classification
and mixture unmixing problems. This particular work
is part of the ongoing effort to develop parallel estima-
tion algorithms for the linear mixture model with an
underlying correlation structure.

Image classification attempts to assign a class la-
bel corresponding to one of the cover classes to each
pixel in the remotely sensed image. When the ground
pixel is very large, as in the case of AVHRR (Advanced
Very High Resolution Radiometer - which has a reso-
lution of 8km to a pixel) data, this is not an accurate
representation of the ground truth. A ground pixel
will typically contain more than one cover class. The
mixture model [1]-[3] assumes that the reflectance of a
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pixel in any spectral band is a linear combination of
the reflectances of the different cover classes contained
in that pixel. The weights of the linear combination
are the proportions of the cover classes in that pixel.

A linear model is typically used since it facilitates
the estimation of the proportions of each cover class
over the pixels of the image. The unmixing problem
involves obtaining the "best” estimates of the fractions
of the different cover classes that are contained in the
pixel. We use a least-squares criterion in our approach.
The result of the mixture modeling approach is a set
of fractional images that correspond to the variations
in the proportions of the cover classes over the image.
This is a quantitative result unlike the thematic map
denoting a rigid assignment that is the end result of
classification.

In the literature, one-shot least-squares methods [3]
as well as iterated Weighted Least Squares (WLS) and
constrained least squares algorithms [4] have been solve
the unmixing problem. We implement a second-order,
Newton-Raphson type of iterative least-squares algo-
rithm with superimposed constraints to solve the mix-
ture modeling problem. The algorithm is found to be
more robust than the one-shot least-squares methods
used in the literature. In experiments so far, it also
seems to yield better estimates of the ground truth as
compared to WLS approaches. The algorithm is tested
on multispectral remotely sensed imagery of a large
portion of the African continent.

II.The Linear Mixture Model and
the Unmixing Algorithm
Each pixel is assumed to contain proportions of the var-

tous cover classes [3],[4]. Therefore, in the linear model,
the spectral response of a pixel in a given spectral band
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is assumed to be generated by the linear combination
of the responses of the various cover classes in that
spectral band. Considering one pixel in the image, the
vector of proportions is denoted by,

f=[fifefs..[.]

where ¢ is the number of classes and each f; denotes
the proportion (a fraction between 0.0 and 1.0) of class
I’ within that pixel. The multispectral observations for
that pixel are denoted by

where n is the number of bands over which the ob-
servations are made and each z; denotes the spectral
response in band ’)’. The linear relation follows as :

ey =mifi +mifo+ .+ mcf.

where m;; denotes the spectral response that a pure
pixel (proportion of 1.0) of cover class 'i’ would pro-
duce in spectral band ’j’. In matrix notation,

x = Mf

The matrix M is conventionally known as the ”end-
member spectra”. In addition to these mixing equa-
tions, we have the constraint that in any given pixel,
the proportions must sum to one; i.e.,

jtf = 1 where j is a vector containing ones.

The non-negativity of the f;’s is imposed by the al-
gorithm during the iterations. Let the estimate of the
proportions, f, be f. Then the squared estimation error
is

e = (x — M) (x — MF).
We attempt to minimize the squared error subject to
the constraint that the proportions must sum to one.

A Lagrangian formulation follows directly and the un-
constrained minimization problem may be cast as

Minimize
Q = (x — M) (x — ME) + AT - 1)

Defining the variable z to be z = [x® A] , the Newton-
Raphson approach to the minimization problem may
be formulated as

a(n+1) = 2(n) - B(VZQ)~1VzQ

where (3 is the step size, V%Q is the Hessian matrix
and VzQ 1s the gradient vector.

III.Experimental results

The algorithm was validated in two steps. First, the
algorithm was applied to synthetic mixture data. The
data was generated randomly and the spectral observa-
tions generated using an endmember matrix that closely
reflected the spectral reflectances found typically in
AVHRR data. The errors involved in estimating the
original fractions (which were, of course, known deter-
ministically) are listed below.

classl | class2 | class3 | class4 | classb | class6

0.02 0.009 | 0.009 | 0.012 | 0.009 | 0.013

On this test data set, we also find that the iterative
algorithm yields much more accurate and robust results
than ”one-shot” (non-iterative) algorithms described in
the literature.

The algorithm was then tested on the AVHRR data
covering a large portion of the African continent. The
size of the images is 433x487 and five spectral bands
are used. Two of the bands are in the visual spectrum,
two others are thermal bands and the last is NDVIL.
The NDVI band is actually derived from the red and
infra-red bands as a ratio. It is the ratio of the differ-
ence of the observations to the sum of the observations
in these two bands, and reflects the presence or absence
of green vegetation. The endmember spectra for this
image were derived from a thematic classification map
that was obtained by the maximum likelihood method.
Using the Classification map, regions that contained
"pure” classes were selected. The spectral response for
each class was averaged over its region, and the proce-
dure was repeated for all the spectral bands. Although
the classification map included several cover classes,
many of these classes were themselves mixtures of the
following three main cover types apart from water : un-
vegetated land,grassland and tropical forest. Accord-
ingly these three cover types were chosen as the ’pure’
classes.

The fractional maps generated by the algorithm
were compared to known vegetation regions as well as
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the thematic classification map. The fraactional maps
generated by the algorithm are shown below in figures
1-3. The results obtained with this algorithm are com-
pared with those obtained using the conventional al-
gorithm used commonly by Earth Scientists. It may
be observed from Figure.l that the conventional algo-
rithm fails to produce estimates in a portion of the
desert region in Africa. The algorithm illustrated in
this paper is more robust. Also, the conventional al-
gorithm does not reflect the presence of grassland in
the rift valley. The iterative algorithm accurately es-
timates the presence of grass in this region (Figures 2
and 3). In order to facilitate comparison, the thematic
classification map is also shown (figure.4).

IV.Parallel Implementation

We have also developed a parallel implementation of
this algorithm on a 32-node Connection Machine. The
algorithm has been implemented using the multiblock

PARTI primitives[5] developed at the University of Mary-

land. Implementation of the algorithm using these
primitives implies that it is machine independent. The
algorithm may be used on any platform on which the
multiblock PARTI primitives are established. This may
either be a stand-alone massively parallel machine or a
distributed computing environment.

In this case, the problem is trivially parallelizable
since the computations are pixel-based and there is no
correlation assumed between the pixels. This imple-
mentation provides a speedup of the order of 10 over a
Sun Sparcstation 10. For example, the algorithm takes
about 30 minutes to estimate fractions over an image of
approximately 500 by 500 pixels. The parallel version
of the algorithm takes about 3 minutes on the same im-
age. The parallel implementation will result in a quick
analysis turn around time on large global-sized imagery
for the end users.

V.Future Directions

We are attempting to model the local correlations within
the image through a quarter-plane causal model. The
estimation of the fractions within each pixel could then
be accomplished through a Kalman filter type of ap-
proach.

We are also attempting to improve the accuracy of
the estimation of the end-member spectra. We pro-

pose to use principal component analysis to identify
the ”true” endmembers.
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Figure 1: Desert Estimate Figure 3: Forest Estimate

Figure 2: Grassland Estimate Figure 4: Classification Result

2762



