COMPARISON OF 2-D FFT IMPLEMENTATIONS ON THE INTEL PARAGON
MASSIVELY PARALLEL SUPERCOMPUTER

M. An' N. Anupindi*, M. Bletsas’, G. Kechriotis', C Lv?, E. S. Manolakos® and R. Tolimier:*

1 Aware Inc.
One Memorial Drive
Cambridge, MA 02142

2 Dept. of Computer Science
Towson State University,

Baltimore, MD 21204

3 Communications and Digital Signal Processing (CDSP) Center
Electrical and Computer Engineering Dept.
Northeastern University, Boston, MA 02115

ABSTRACT

In this paper ! we discuss the parallel implementa-
tion of multidimensional FFTs on distributed memory
multi-processor machines. We introduce a compact no-
tation to describe four equivalent parallel algorithms
and discuss their advantages and disadvantages. Two
algorithms, suitable for the case when initial and final
data are distributed either row- or column-wise, the
traditional Row-Column (RC) and a variation of the
Vector Radix (VR) that we call partial Vector Radix
(PVR) are presented and their efficiency on the Paragon
is compared. It is shown that the PVR, although it re-
quires larger amount of interprocessor communication,
results in more efficient implementations due to the reg-
ularity of local and distributed memory accesses. For
the case in which data are partitioned along both di-
mensions, two suitable parallel algorithms, the Collect-
Distribute (CD) and the general full Vector-Radix
(FVR), are presented. Again, it is shown that regular-
ity in memory accesses for the case of the FVR, results
in more efficient implementations.

1. INTRODUCTION

Since the invention of the Fast Fourier Transform (FFT)
[1], Discrete Fourier Transforms (DFT) have been used
extensively as a computational tool in many different
areas in signal processing, communications and numer-
ical solution of differential equations. With the increase
in the use and development of parallel multi-processor

1This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was moni-
tored by the Air Force Office of Scientific Research under con-
tract number F49620-91-C-0098.

2755

machines as a low-cost alternative to traditional super-
computers, the need for efficient parallel algorithms for
single and multi-dimensional FFTs has become appar-
ent [2, 3, 4, 5]. Due to its global dependencies (every
output point depends on every input point), the par-
allelization of the FFT is a non-trivial task. The sepa-

rability property of the multidimensional FFTs allows
for the decomposition of the problem into a collection
of smaller dimensional problems that can be solved in-
dependently in each dimension. We will assume that
the parallel system consists of p processors that com-
municate via interconnection links. Although the data
are always physically stored in the memory as an 1D
vector, they can be interpreted as multidimensional ar-
rays with suitable dimensions. In such an interpreta-
tion it is assumed that the Fortran storage convention
is followed, i.e. when the data are being accessed se-
quentially, the first index of the multidimensional array
changes faster, then the second, third etc.

The computation of any multidimensional FFT can
be decomposed into smaller building block computa-
tions and data reorderings. The tensor product nota-
tion [6, 7] along with its identities and transformations
provides a convenient mathematical framework for de-
scribing multidimensional FFT algorithms as well as
for deriving equivalent formulations. In this paper we
will describe four equivalent algorithms for the compu-
tation of the 2D FFT in a distributed memory multi-
processor environment in terms of elementary opera-
tors that act upon the data. These elementary opera-
tors are:

e T'2: transposes a two dimensional array.

0-7803-2431-5/95 $4.00 © 1995 |[EEE

e T3(i,j) : exchanges the #** and j** indices of a
three dimensional array.

o T4(i,5): exchanges the i** and j** indices of a
four dimensional array.

e F': performs one or more 1D FFTs. It performs
a single FFT if applied to a vector, m FFTs if
applied to a 2D array with m columns, m x n
FFTs if applied to a 3D array whose last two
dimensions are m and n, etc.

e W: pointwise multiplies each of the columns of
a matrix (in general consecutive data of length
equal to the first dimension of a multidimensional
array) by a vector of equal length.

e G(p): All-to-all communication operator. When
applied to an (m, p, p) array distributed among p
processors along the last dimension, it exchanges
the second and third indices. To achieve this,
each node keeps one data block of length m, and
exchanges p — 1 messages of length m with p—1
other nodes in the network.

Note that only the G(p) operator involves inter-processor
communication whereas all the others operate on data
that are stored in the processor’s local memory.

2. ALGORITHMIC DESCRIPTION

2.1. THE RC METHOD

The Row-Column (RC) method is the most widely used
for the implementation of paralle]l multi-dimensional
FFT algorithms. In the 2D case each node holds a
number of columns of the 2D array, and first it per-
forms 1D FFTs of the columns. Then, all nodes coop-
erate in order to globally transpose the array, such that
each node holds a number of rows of the original ar-
ray. To perform this global matrix transposition, both
local and global data permutations are required that
can be expressed in terms of the operators G(p), T2
and T'3(3, j) introduced in the previous section. After
the global data transposition a second set of 1D FFT
computations is being performed and finally, one more
global transposition step is required if it is desired to
obtain the results in the same nodes where the corre-
sponding data were stored.

The RC method can be summarized in terms of the
operators T', G and F' as follows:

(m,n/p) - (m,n/p) —
(m/p,p,nfp)) (m/p,p,nfp) —
m-nfpt,p) B (m/p,n/pp) —
(m/p,n) LN (n,m/p) £,
(n,m/p) — (n/ppmfp) L&
(n/p,m/p,p) &) (n/p,m/p,p) —
(n/p,m) = (m,n/p)

In the previous algorithmic description an arrow with-
out superscript involves no actual computation or data
transfer but simply indicates that a multidimensional
array (actually a vector in the memory) is being con-
sidered as having a different set of dimensions.

2.2. THE PARTIAL VECTOR RADIX
METHOD

In this method, the data is assumed to be distributed in
exactly the same fashion as in the RC method. There
are p nodes available, and radix p FFTs are computed
across the nodes.

(mynfp) - (m,nfp) —
m-n/pp) B (m-njpp) B
(p,m-n/p) - (@Em-n/p) -
(p,m-n/p) > (m-n/p,p) B
(m-n/pp) — (mnfp) >
(n/pm) 5 (fpm) D
(mn/p) — (m-njpp) B
(m-n/p,p)

2.3. THE COLLECT-DISTRIBUTE
METHOD

For this method, each node is assumed to hold data
partitioned along both columns and rows. Each node
stores in its local memory an {(m/p,n/q) submatrix of
the (m,n) array. This method is essentially an exten-
sion of the RC method for this distribution of the data.
Each node collects first a number of columns, performs
1D FFTs, redistributes them, and then performs the
same for the rows. In terms of the operators we de-
fined above, the method can be described as:

2756

(m/p,n/q) — (m/p,n/q-p,p) it
(m/p,n/(q" p),p) T (m/p,p,n/(q D)) —>
(m,n/(q-p)) £ (mn/(a-p) —
(m/p,p,n/(q- D)) i) (m/p,n/(q- p),p))
(m/p,n/(q-p),p) ;_) (m/pvn/Q) G__)
m/@-ghanfe)) mip-on/gq 23
(m/(p-9),n/,0) — (m/(p-g),n) Rk
(n,m/(p- q)) L (m/(p-) G”
(m/(p-g),n) — (/- 9n/ee) Y
m/p-on/eg)) (m/(p-q)an/e) —

(m/p,n/(q- p),p)

2.4. THE GENERAL VECTOR RADIX P xQ
PARALLEL ALGORITHM

The algorithm assumes that p x ¢ nodes are available,
each storing in its local memory an (m/p,n/q) subma-
trix of the global (m,n) matrix.

(m/p,n/q) —
(m/(p-p),p,n/ (@ 0),0) "=
(m/(p-p),n/(g-9),p, D) G—*
(m-n/(p-p-9-9),p" 9 1oy
(m-n/(p-p-q-9),p 9 >
(p-¢m-n/(p-p-q-9) —
(pam-n/(p-p q-q) —

(pgm-n/(p-p-q-q) —>
(pgm-n/(p-p-q-9) =5
(@pm-n/(P-p-q-9) —
(@pm-n/(p-p-q-9)
(g,p,m n/(p-p-q-q) =)
(p’q’m'n/(p'p'Q'Q)) —

(@-gm-n/(p-pq-q) >
(m-n/(p-p-q-9,p 9 ey
(m-n/(p-p-q-9,p-q9 —
(m/(p-p),n/(a-9),p,0) —

(m/(p-p),n/(q-9),p,q) i

(n/(g-q),m/(p-P),prq) —
(n/(g-9),m/(p-P),p,q) iy

(m/(p-p),n/(g-9),p,q) ;—>
(m-n/(p-p-q-9,p-q L

(m-n/(p-p-q-q9),p-9) — (m/p,n/q)
3. IMPLEMENTATION RESULTS

We have implemented the parallel algorithms described
in the previous section on the Intel Paragon multipro-

cessor system, that is based on the i860XR micropro-
cessor and employs a mesh interconnection network.
The programs are written in Fortran calling upon opti-
mized assembly coded routines for the node computa-
tions. Assembly-coded routines for the nodes include
1D FFTs, routines from BLAS and matrix transposi-
tion routines. The RC method can be made very efli-
cient since optimized 1D FFT routines can be used. For
the case of the partial and full VR algorithms, the com-
putation of the p-point FFTs (p is the number of nodes)
is being performed either via optimized hand coded as-
sembly routines that perform strided small-sized FF'Ts
with twiddle factor multiplication, or by performing
radix-2 butterflies explicitly using vectorized complex
multiply-accumulate routines from the BLAS library.
When the number of nodes p is relatively small, the
computation of the p—point FFTs along the second di-
mension of a n X p matrix (Fortran storage convention
is assumed) via our vectorized FFT codes is substan-
tially faster than transposing the matrix, performing
m p—point FFTs, and then transposing again. In the
vectorized radix-2 butterflies, operations are performed
on data vectors of suitable length not to exceed the size
of the processor’s data cache and therefore the number
of cache misses is significantly reduced.

In Table 1, we compare the RC and PVR imple-
mentations for a variety of test and machine sizes. Al-
though the PVR method has not been fully optimized
it performs generally better than the RC with the ad-
vantage being more evident for relatively small sized
machine partitions. For more than 16 nodes, the PVR
algorithm performs only slightly better than the RC,
however substantial optimization can be performed.

In Table 3, we compare the Collect-Distribute (CD)
implementation with the Full VR.. In both implementa-
tions the 2D data are being distributed along both di-
mensions and the results are obtained in-place. Again,
as in the case of the RC, the CD method has the ad-
vantage of using highly optimized 1D FFT routines, at
the expense of increased data movements. Clearly, as
we can see from Table 3, the FVR implementation is
more efficient that the CD method, and additional op-
timization in the computation of the radix p x g FFTs
is possible.

4. CONCLUSIONS - CURRENT
DIRECTIONS

Algorithms that do not use the traditional Row-Column
approach for the computation of the 2D FFT have been
known to result in more efficient implementations on
single processor systems. We have shown that the same

2757

nodes | PVR | RC

m n
256 256 2 83 90
256 | 512 2 162 190
512 512 2 390 400
512 ([1024 2 690 918

1024 | 1024 2 1581 | 2065
256 512 4 96 109
512 512 4 187 229
512 (1024 4 371 495

1024 | 1024 4 829 | 1093

1024 | 2048 4 1729 | 2282

2048 | 2048 4 3584 | 4742
512 512 8 113 123
512 | 1024 8 210 267
1024 | 1024 8 449 582
1024 | 2048 8 900 | 1186

2048 | 2048 8 1853 | 2443

512 ([512 16 84 66
512 | 1024 16 140 127
1024 | 1024 16 254 260
1024 | 2048 16 484 522
2048 | 2048 16 973 | 1110
2048 | 4096 16 1945 | 2061
512 512 32 93 71
512 | 1024 32 119 104
1024 | 1024 32 189 185
1024 | 2048 32 318 334
2048 | 2048 32 542 608
2048 | 4096 32 1021 | 1115
4096 | 4096 32 2036 § 2087

Table 1: Comparison of the partial Vector-Radix ap-
proach and the Row Column optimized implementation
(execution times are in milliseconds).

result is true for the case of distributed memory multi-
processor systems with fast interprocessor communica-
tion links, despite the larger amount of data communi-
cation that is required for the Vector-Radix and Vector-
Radix like algorithms. In the case of RISC processors
such as the Intel i860 that uses efficient pipelining to
perform a floating point multiply accumulate operation
every other clock cycle, the advantage is mainly not in
the number of processor clock cycles but due to the
more regular accessing of the data stored in the local
memory of the processors that allows for the optimal
use of cache memory. We are currently working on the
optimization of the VR codes. Issues of interest are
the efficient computation of small-sized 2D FFTs along
the second and third dimension of a three dimensional
array, and the optimization of the node code for the
computation of larger 2D FFTs.

m n nodes | FVR | CD
256 | 512 4 119 | 155
512 512 4 230 301
512 | 1024 4 464 | 606
1024 | 1024 4 951 | 1237
1024 | 2048 4 2111 | 2676
512 | 512 8 132 -
512 | 1024 8 249 -
1024 | 1024 8 487 -
1024 | 2048 8 1062 -

2048 | 2048 8 2180 -
512 512 16 81 99
512 | 1024 16 151 | 188
1024 | 1024 16 275 | 377
1024 | 2048 16 546 | 750

2048 | 2048 16 1104 | 1559

2048 | 4096 16 2402 | 3106

Table 2: Timings for the Full VR implementation (ex-
ecution times are in milliseconds).

5. REFERENCES

[1] J.W. Cooley and J.W. Tukey. An Algorithm for the
Machine Computation of Complex Fourier Series.
Math. Comp., 19:297-301, 1965.

[2] G. Angelopoulos and I. Pitas. Two-dimensional
FFT Algorithms on Hypercube and Mesh Ma-
chines. Signal Processing, 30:355-371, 1993.

[3] G. Kechriotis, M. An, M. Bletsas, R. Tolimieri, and
E. S. Manolakos. A New Approach for Comput-
ing Multi-dimensional DFTs on Parallel Machines
and its Implementation on the iPSC/860 Hyper-
cube. IEEE Trans. on Singal Processing, To ap-
pear: January 1995.

[4] I. Gertner and M. Rofheart. A Parallel Algorithm -
for 2-D DFT Computation with No Interprocessor
Communication. JEEE Trans. on Parallel and Dis-
tributed Systems, 1:377-382, July 1990.

[5] 1. Gertner and R. Tolimieri. Fast Algorithms to
Compute Multidimensional Discrete Fourier Trans-
form. In Proc. SPIE Real-Time Signal Processing,
pages 132-146, San Diego, CA, 1989.

R. Tolimieri, M. An, and C. Lu. Mathematics
of Multidimensional Fourier Transform Algoritms.
Springer-Verlag, New York, 1993.

[6

—

[7] R. Tolimieri, M. An, and C. Lu. Algorithms
for Discrete Fourier Transform and Convolution.
Springer-Verlag, New York, 1989.

2758

