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ABSTRACT

In this paper we have addressed the problem of ana-
lyzing the digital pulse waveforms of radiation detec-
tor outputs. With the availability of extremely high-
speed A/D conversion with good resolution, it is now
possible to look more deeply at the waveform shapes
than is currently done. In our studies, a new tech-
nique of unsupervised pattern recognition has been ap-
plied which has demonstrated accurate classification
(98.33% in probability) of digital pulse waveforms. To
the best of our knowledge, application of such a tech-
nique is novel. The preliminary results of this system,
which show clearly improved measurement conditions,
are therefore very promising.

1. INTRODUCTION

Currently, prevailing methods of identifying particle
capture events from a radiation detector simply de-
tect the peaks of the pulse waveform for each event or
perform an analog integration of the waveforms. His-
tograms are then plotted to examine the event popula-
tion and assess the composition of the radiation sources
[1, 2]. In effect, these histograms, or spectra, are usu-
ally ‘clustered’ in one dimension. These techniques are
not able to classify two or more distinct peaks of parti-
cle events when the resolution of the radiation detector
is less than the difference between two distinct peaks,
or if to much noise is present.

In our study a new technique of unsupervised pat-
tern recognition was investigated for classification of
events acquired digitally from radiation detection in-
struments. In specific, waveforms were analyzed to
separate different particle classes from an air source
containing radon and plutonium. The rationale behind
this study was to explore the possibility of performing
direct digital analysis on these waveforms — acquired
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at sampling rate of 50 MHz — to classify events in
a manner previously not possible by completely ana-
log instruments. This system extracts key multidimen-
sional features from each output pulse waveform and
performs an analysis of those features. In the train-
ing phase, a cluster analysis was performed on vectors
that consisted of features of the pulse shapes thought
to be important for classification. In the recognition
phase, pulse waveforms were analyzed to determine
which population the events were drawn from. Results
from multi-feature analysis suggest that methods us-
ing more detailed information than just pulse height or
area offer considerable advantages over existing instru-
ments.

2. THE CLASSIFICATION SYSTEM

This section presents the structure of the digital wave-
form classification system and the method to imple-
ment this system. As shown in Figure 1, the train-
ing classification system consists of five sub-systems,
namely, a preprocessor, a selection of measurement fea-
tures, a cluster analysis, a canonical discriminant trans-
formation and an optimal decision function. The imple-
mentation of classification system is given in Figure 2.
The functionalities of those sub-systems are described
in the following sub-systems. .

2.1. PREPROCESSOR

The major task of the preprocessor is first to filter out
‘bad’ or double digital waveforms and then to extract
measurement features from each digital waveform. Even
this stage of analysis is something analog methods can
not do. Each of the measurement features indicates a
particular measurable characteristic of the digital wave-
form. In general, these measurement features do not
share the same units due to the fact that they describe
the physical objects from various aspects. In order to
enable the application of sub-systems to make the en-

0-7803-2431-5/95 $4.00 © 1995 IEEE



Canonical
Discriminant
Transformation
Selection of Optimal
~—=»1 Prep o + M Ly Cluster Ll Decision |-t
I Features Analysis Function

Figure 1: A training block of multi-feature
based unsupervised pattern classification sys-
tem.
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Figure 2: A block of implementation classifier.

tire feature space roughly ‘circular’ in spread, the val-
ues of the output features from the preprocessor are
normalized.

2.2. SELECTION OF MEASUREMENT
FEATURES

It has been showed [3] that there is a ‘peaking’ phe-
nomenon in the finite-sample-size case. That is, mis-
classification error initially drops with addition of new
features, then attains a minimum, and then begins to
increase. The number of features at which the expected
the probability of misclassification is minimal is called
the optimal number of features {4]. This number de-
pends on the design sample size, the type of classifi-
cation rule, the class-conditional distributions of the
pattern vector, and on the effectiveness of features and
their ordering. Therefore, it is necessary to select the
subset of discriminatory features from the initial fea-
tures in such a way that they best reveal difference
among the digital waveform classes and produce a min-
imum probability of misclassification error.

In our study, the selection subset of discriminatory
features from the initial features of the digital wave-
forms is based on a statistical technique called step-
wise discriminant analysis (SDA). The SDA procedure
selects a subset of quantitative features using stepwise
selection under the assumption that the within-class
distributions are approximately multivariate Gaussian.
The final measurement features chosen by SDA along
with cross-validation is usually a good subset of possi-
ble features. We refer to this SDA as a pre-dimensional
reduction technique.

2.3. CLUSTER ANALYSIS

A commonly used partitional clustering approach is
the K-means algorithm. This algorithm evaluates the
proximity between groups using the Euclidean distance
between group centroids. The K-means algorithm is
based on the minimization of a performance index which
is defined as the cluster center. This iterative algorithm
is guaranteed to converge to a locally optimal clustering
and has been extensively addressed in the literature [5].
Therefore, further details of the K-means algorithm are
omitted herein.

2.4. CANONICAL DISCRIMINANT
TRANSFORMATION

The canonical discriminant transformation (CDT) is
a dimensional reduction technique related to princi-
pal components transformation (PCT). This technique
has certain maximal properties similar to the PCT [6].
However, whereas PCT considers interrelationship
within a set of variables, the focus of CDT is on the
relationship between two groups of variables.

When two or more groups of observations with mea- -
surements on several quantitative variables are pro-
vided, CDT can obtain a linear combination of the
variables that summarizes between-class variation in
much the same way that PCT summarizes total vari-
ation. The highest possible multiple correlation with
the groups is called the first canonical correlation. The
coefficients of the linear combination are the canonical
coefficients. The first canonical component is defined
by the variable of the linear combination.

The second linear combination uncorrelated with
the first canonical component that has the highest pos-
sible multiple correlation with the groups is considered
as the second canonical correlation. Until the number
of canonical component equals the number of classes
minus one, the process of extracting canonical compo-
nent can be repeated. The detail mathematical treat-
ments of the CDT can be found in reference [6].

An advantage of the CDT is that it not only has cer-
tain maximal properties similar to the PCT but it also
can take class discrimination into consideration. In-
deed, this procedure preserves the separation between
the classes.

A disadvantage of the CDT is that it needs the
pattern samples with label information before this ap-
proach can be employed. In other words, in the un-
supervised pattern recognition, this approach can be
applied only after a clustering algorithm has been em-
ployed on the data set.
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2.5. OPTIMAL CLASSIFIER

When a large number of pattern vectors are available,
it is reasonable to assume that the class density func-
tion of the feature vectors for each class is multivariate
Gaussian density. Then the class density functions of
the feature vectors for each class can be estimated from
the pattern vectors and the Bayes’ classifier that min-
imizes the probability of misclassification error can be
derived.

Let p(w;) be the estimated a priori probability, m;
the estimated mean vector, and 6,- the estimated co-
variance matrix of the ith class, where1 =1, 2, ..., N.
The quadratic classifier assigns a pattern vector x to
the training digital waveform associated with the max-
imum likelihood. Thus the expressions,

~
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(1)
define a set of discriminant functions that optimally
assign training digital waveform inputs to the correct
distribution. Finally, the implementation of classifica-
tion rule is

if fe(x) = maz:[fi(x)].  (2)

Taking the natural log of Equation (1) and multiplying
by two_yields an equivalent set of discriminant func-
tions, D;(x), given by

choose kth class
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. ©)
where (x —m;)TC; (x — @) is the Mahalanobis dis-
tance from the patiern vector x to the mean vector
associated with ith class. Note that the middle term
on the right-hand side of Equation (3) represents the
difference between statistical correlation and likelihood
partitions. This term contains the information about
the spread of each distribution in the multidimensional
signal space.

3. DATA DESCRIPTION

The training data set was 149,988 samples consisting
of 1,435 digital waveforms sampled at 50 MHz with 10-
bit resolution. These were obtained from a radiation
detector of an alpha-constant air monitor with radon
and plutonium sources. Figure 3 shows a sample plot
of waveforms acquired from a radiation detector. No
a priori label information was provided in the training
data set. Knowledge of the underlying physics dictates
there should be three distinct populations of events.
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Figure 3: A plot of originally digital waveforms from
a radiation detector of an alpha-constant air monitor
with radon and plutonium sources.

4. EXPERIMENTAL RESULTS

An initial algorithm was developed to extract 15 mea-
surement features from each digital waveform of incom-
ing radon and plutonium events. The final selection
of the subset of quantitative key features from an ini-
tial 15 measurement features was based on a stepwise
discriminant analysis. Seven-dimensional measurement
features that best revealed differences among digital
waveform classes were finally generated.

The goal of the cluster analysis was to find a way of
parametrically describing the digital pulse waveforms
that would form distinct clusters in a multidimensional
feature space. A modified K-means clustering algo-
rithm was employed on the 50 MHz sampled data from
the alpha-constant air monitor with the radon and plu-
tonium source. The results of this analysis for 50 MHz
sampled data are shown in the Table 1 (a) and (b). As
can be seen, the within-cluster scatter and the between-
cluster distances suggest that the clustering resulted in
strong separability. In this case, the probability of mis-
classification error would have been reasonably low if
Gaussian statistics are assumed.

The covariance of the multidimensional feature space
has a complex structure, making visual interpretation
of the digital waveforms more difficult. For our case,
given a cluster variable and seven quantitative mea-
surement features, a CDT was applied to derive a linear
combination of the quantitative features (called canon-
ical variables) that have 97.43% multiple correlation
with the three clustering groups. The second canonical
correlation (80.90%) is obtained by finding the linear
combination uncorrelated with the first canonical vari-
able. The first and second canonical variables together
accounted for 100% of the total variation among the
seven measuring features. This analysis can simplify
the structure of the covariance and has been applied
to the sampled data to make visual interpretation of
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[ Table 1(a) Cluster Summary |

No. of | RMS Std | Nearest | Centroid

Cluster | Vectors | Deviation | Cluster | Distance
1 107 0.8786 2 6.0332
2 1256 0.6223 3 5.5381
3 72 0.8999 2 5.5381

[ Table 1(b) Distance Between Cluster Means |

Cluster 1 2 3
1 0.0000 6.0332 7.7055
2 6.0332 0.0000 5.5381
3 7.7055 5.5381 0.0000

cluster graphs more straightforward and to assess the
results of clustering performance. Figure 4 shows a
clustering graph for dimensionality reduction in the 50
MHz sampled data after employing the canonical dis-
criminant technique. This again demonstrated that the
three clusters are fairly separable.

The estimated probability of misclassification error
of the Bayes’ optimal classifier was evaluated based on
the a posteriori probability of membership in each clus-
ter. The projected accuracy of the Bayes’ Gaussian
model to classify three classes of pulse waveforms is
98.33% in overall.

An added benefit of the digital technique is that it
can be used to detect corrupted pulse waveforms (such
as Compton scattering or overlapping events) and elim-
inate them from the aggregate statistics. This property
is particularly important in analyzing radiation sources
with high count rates.

5. CONCLUSION

We have presented an novel unsupervised pattern recog-
nition system to analyze and classify digital waveforms
from a radiation detector of an alpha-constant air mon-
itor with radon and plutonium source. The preliminary
results of this new technique demonstrate clearly im-
proved measurement conditions and are therefore very
promising. This system not only improves current as-
sessment methods of digital pulse waveforms but also
provides a new useful tool in detection for digital radi-
ation spectroscopy.
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Figure 4: Clustering graph of dimensional reduction.
o and + represent digital waveforms from radon.
represents digital waveforms from plutonium.
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