LOW LATENCY STANDARD BASIS GF(2¥) MULTIPLIER AND SQUARER
ARCHITECTURES

Surendra K. Jain and Keshab K. Parhi

Department of Electrical Engineering
University of Minnesota, Minneapolis, MN 55455

ABSTRACT

A new parallel-in-parallel-out bit-level pipelined multi-
plier is presented to perform multiplication in GF(2™).
This new multiplier uses m? basic cells where each cell
has 2 2-input AND, 2 2-input XOR and 3 1-bit latches.
The system latency of this multiplier is m+1 compared
to 3m in previous architectures. The number of latches
required per cell has also been reduced from 7 to 3. We
also present a bit-level pipelined parallel-in-parallel-out
squarer. This squarer has a system latency of [m/2]
compared to 3m in previous designs and is 25 % more
hardware efficient. The critical paths in both these
proposed designs are the same as in existing designs.

1. INTRODUCTION

In recent years, finite fields have received a lot of atten-
tion because of their application in error control coding
[1] [2]. They have also been used in digital signal pro-
cessing, pseudorandom number generation, encryption
and decryption protocols in cryptography. The design
of circuits with low circuit complexity, short computa-
tion delay and latency to perform finite field arithmetic
operations is a matter of great practical concern. Addi-
tion in finite fields is bit independent and is a relatively
straightforward operation. However, multiplication is a
more complex operation. The elements of GF(2™) can
be represented in standard, normal or dual basis [1] [2].
The standard basis multipliers have lower design com-
plexity and are easier to extend to larger finite fields
because of their simplicity, modularity and regularity
in architecture.

In this paper, we present a new multiplier using
standard basis representation. The proposed multiplier
has a latency of m+ 1 compared to the existing designs
which have a latency of 3m. The proposed multiplier
needs m? identical cells, each of which needs two 2-
input AND gates, two 2-input XOR gates and three

This research was supported by Advanced Research Project
Agency and the Solid State Electronics Directorate, Wright-
Patterson AFB under contract number AF/F33615-93-C-1309.

2747

one bit latches. The delay involved in the circuit is the
propagation delay of a 2-input AND gate followed by
a 2-input XOR gate.

We also present a reduced complexity squarer. The
squarer consists of m|m/2] cells, where each cell has
3 2-input AND, 3 2-input XOR and 4 1-bit latches.
This squarer results in hardware savings of 25 % and
a reduction in latency from 3m to [m/2]. The critical
path in the squarer is the delay of a 2-input AND gate
followed by a 3-input XOR gate.

2. ALGORITHM

It is assumed that the reader is familiar with the basic
concepts of finite field. The properties of finite fields
are covered in detail in [1] [2].

Let A= Em'laka and B = X7 1b;,oz be two el-
ements of GF(2™), P = I\~ =0 pkaf be the product of
A and B and F = E;""Olfka be the irreducible poly-
nomial in standard basis representation. The equation
F=0ora™= EZ:OI fra® is used to reduce the prod-
uct P = AB to a polynomial of degree less than m. P
can be written as follows.

P AB = Z7 (Aak)be
(- ((Abmora + Abp_2)a + ..)a+ Abg(1)

Let Aa* = E7 - taka™ | i. e ak is the coefficient of o™
when A is multiplied by o* The computation of Aa*
can be performed recursively onkfor0<k<m-—1.

Initially, Aa® = 4, ie.,al =a, for 0<n<m-—1.
For 1 € k£ < m — 1, using properties of finite fields, it
can be shown [1] [2] that

E k-1, k-1
n a,_1+a, 1 fa,l1<n<m-1

af = o745 (2)

This can be extended to obtain Aa?*, for which we get

a

a = 2’°22+a,2,:c szn 2" 2)',,,2<n<m—1
2k — 2k 2f0+a2k 2f0
a?k — 2lc 2f1 +a2k 2f1 (3)

0-7803-2431-5/95 $4.00 © 1995 IEEE

where ’ is af.

3. A PARALLEL-IN-PARALLEL-OUT
MULTIPLIER

This multiplication algorithm can be illustrated by a
Dependence Graph as shown in Figure 1 where m? ba-
sic cells are used. ,, ’

o
<

[y
(5

NSNS

[g]
=

—

el Je &]

Figure 1: Dependence Graph for the Multipli-
cation Algorithm

The basic cell Ci,; at position (i,j) receives al(co-
efficient of o® in Aa?, f; (coefficient of o in the i irre-
ducible polynomlal c’ (= %ial™), a, -1 (coefficient
of o'~! in Ao?, u; (“coefficient of &™~1 in Aa’) and
bj (coefficient of o’ in B). This cell computes al*! and
c:'H = T;alb;: This basic cell is shown in Figure 2.

We can now pipeline the Dependence Graph (DG)
shown in Figure 1 to obtain a bit-level-pipelined par-
allel multiplier architecture. We can use the retiming
algorithm [3] assuming infinite delays are available at
the input for pipelining. The cutsets for a bit-level
pipelined architecture where the critical path is the
computational delay of 1 basic cell is shown in Figure
3.

The critical patil with these cutsets is equal to the
delay of a 2-input AND followed by a 2-input XOR
gate. Notice that al*! output from cell C; ;,j feeds both
Cij+1 and Cx+1_1+1, we can therefore make the DFG
more regular by removing the diagonal connection and
feeding a”’1 to cell Ciy1,j41 from the cell C; j41. We
can also move the pipelining delays inside the basic cell.
The modified basic cell is shown in Figure 4.

Figure 2:
plier

0

Figure 3: Cutsets for Pipelining the DG

Using this basic cell, we can build a parallel-in-
parallel-out multiplier which has a latency of m+1. A
system level diagram of a parallel-in-parallel-out multi-
plier with this basic cell for GF(2*) is shown in Figure
5.

The multiplier has m? cells and each cell has 2 2-
input AND, 2 2-input XOR gates and 3 1-bit latches.
The parameter C = EJ ' cxa¥, an element of GF(2™),
is also input to the multiplier so that the circuit actu-
ally performs AB + C.

Notice that in the parallel multiplier vy, ; is con-
nected to u;. It is worth noting that although it ap-
pears in the DFG that edges in the vertical direction
are going in both up and down directions, that is not
the case. The edge from cell C; ;1 to the cell Cit1 j41
is actually the output of the cell C;; and hence there

2748

b Yiij o,
]
. "E J_\Z#D_. ‘1?'
ag &

Yi

Figure 4: Modified Basic Cell C;; of the pro-
posed multiplieer
(]

OZDely

Figure 5: Parallel-in-Parallel-out Multiplier

is no feedback path in this DFG. This modification is
made to make the DFG more regular and hence more
suitable for VLSI implementation.

Inputs ey, 45, gp, o5 and Ay, ¢s receive in parallel the
¢l sof C,alsof A, fis of F,respectively, for 0 < n < 3.
Th e pl, s of the result P are transmitted out in parallel
from the outputs e, 45 for 0 < n < 3. One may use
degenerate versions of the cell shown in Figure 4 in the
bottom row and the rightmost column of the multiplier
since some of the inputs and outputs of these cells are
not used. ,

The proposed multiplier is a semi-systolic version
of the multiplier of [4]. The signals b and u in this
design have been made broadcast signals. The design
of the multiplier of [4] can also be obtained from the

Dependence Graph (DG) shown in Figure 1. We can
again assume infinite number of delays at the input
and obtain a different retiming solution to obtain the
systolic version proposed in [4].

4. A PARALLEL-IN-PARALLEL-OUT
SQUARER

In a finite field,
(a+) = + (4)

where «, 3¢GF. Using this property of finite field and
equation (3), we can develop a hardware efficient squarer
for finite field. We shall illustrate this with an example
for GF(2*). Squaring operation can be represented by

A
AZ

ag + a1 + aza? + aza® (5)
ag + a1a? + azat + asza®. (6)

To obtain the result in the standard basis, we need

] ay

$ H $ ﬂ O =Delay
4
f;, —d
2 Cyy Ci
¢ — —O~ 1,
f; —
’ —
a:] Cz,o Cll
9 =,
—
::_. C1,o Cl,l
o T —o—»,
£y —
f et
) — Coo ¢
& ——d —6-7,

0
0
| | d ol
Figure 6: Parallel-in-Parallel-out Squarer

to express a*, a® in terms of 1,,a?, a®. This can be
achieved using the squarer shown in Figure 6. The
squarer has been designed using the technique illus-
trated in Section 3 for the multiplier. The squarer con-
sists of m|m/2] basic cells. The inputs to the squarer
are C = ag + a10?, B = o*, az,a3, f and f’. The first
column computes Bas + C and Ba? while the second
column outputs the desired result A2.

The basic cell performs the step described in equa-
tion (3) and is shown in Figure 7. The squarer is semi-
systolic where each basic cell needs 4 latches. A fully
systolic version would need 10 latches [5]. The critical

2749

;n'l 4 nl a

pet T DD

- -3
L]

®

X

2
lx * Traverselne

Figure 7: Basic Cell C;; of the squarer

path in both the cases is equal to the delay of 2 input
AND and 3 input XOR gate. This squarer design is
easily extendable to a larger finite field. In general, for
GF(2™), we need |m/2]| columns where each column
comprises of m basic cells. Note that we can use degen-
erate versions of the basic cell in the rightmost column
and in the bottom row because some of the outputs are
not needed. Again, there are no feedback paths in the
squarer,

5. CONCLUSIONS

The properties of the proposed multiplier are compared
in Table 1 with those of the multipliers of [4] [6].

Item Yeh ¢t o Wang e. o/ | Figure§
Number of hasie. colls ! ! !
Basie. Cell 22input AND, | 2 2input AND), | 2 2nput AND),
2 2-npat XOR, ! Jinpat XOR {2 2-nputXOR
7 1-hit lasches 7 1-bit latches | 3 1-bit labches
Latoncy Im Im m+l
Time step 1 2input AN) and | 1 2-input AND and | 1 2input ANI) and
1 2input XOIL gate: | 1 Jinput XOR gate | 1 2-input X0 gate

Table 1: Comparison of Different Multipliers

Table 2 compares the proposed squarer with using
a dedicated multiplier and the power-sum circuit [5].
It is worth noting that the proposed multiplier needs
less than half the number of latches required in previ-
ous implementations while maintaining the same criti-
cal path. The system latency has also been reduced to
m+ 1 from 3m. The price we pay for this reduction in
hardware requirement and system latency is to allow
two broadcast signals.

The proposed squarer results in hardware savings of
more than 50 % over using the power-sum circuit of [5]

Item Multiplier Power-sum | Figure 4
Number of hasie. enlls n? m’ m{m/2|
Hasie. Cell 22input AND, | 3 2input AND), |3 2:input AND),
2 2inpnt XOR, 3 2input XOR | 3 2-inputXOR
3 1-hit latches 10 1-bit latches | 4 1-bit lasehes
Latency Im Im [m/Y
Time stop 1 2input AND and | 1 2-input AND and | 1 2input AN and
1 2input XOW gate | 1 J-input XOR gate | 1 J-input XOIL gate

Table 2: Comparison of Different Approaches to
Squaring

and savings of more than 25 % over a dedicated mul-
tiplier to perform the squaring operation. The system
latency has been reduced to |m/2] from 3m without
any increase in the critical path.

The proposed multiplier and squarer, if used, in the
square and multiply algorithm to perform exponentia-
tion would result in hardware savings of over 12.5 %
over the present design [7] and reduction in system la-
tency to m? + 1 from 2m? + m. Both the proposed
multiplier and squarer are well suited for VLSI sys-
tems because of regular interconnection pattern, mod-
ular structure and complete concurrency in operations.

6. REFERENCES

(1] R. Blahut, Theory and Practice of Error Control
Codes. Addison-Wesley Publishing Company, 1983.

[2] F. J. MacWilliams and N. J. A. Sloane, Theory of
Error Correcting Codes. New-York:North-Holland,
1977.

(3] C. E. Leiserson, F. Rose, and J. Saxe, “Optimizing
synchronous circuits by retiming,” Proc. of the third
Caltech Confcrcncle on VLSI, pp. 87-116, March
1983.

[4] C. S. Yeh, I. S. Reed, and T. K. Truong, “Systolic
multipliers for finite fields GF(2™),” IEEE Transac-
tions on Computers, vol. C-33, no. 4, pp. 357-360,
April 1984.

[6] S.-W. Wei, “A systolic power-sum circuit for
GF(2™),” IEEE Transactions on Computers,
vol. 43, no. 2, pp. 226-229, Feb. 1994.

(6] C.L. WangandJ. L. Lin, “Systolic array implemen-
tation of multipliers for finite fields GF(2™),” JEEE
Transactions on Circuits and Systems, vol. 38,
no. 7, pp. 796-800, July 1991.

[7) C.-L. Wang, “Bit-level systolic array for fast ex-
ponentiation in GF(2™),” IEEE Transactions on
Computers, vol. 43, no. 7, pp. 838-841, July 1994.

2750

